Skip to main content
Log in

How rigid the finite ultrametric spaces can be?

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

A metric space X is rigid if the isometry group of X is trivial. The finite ultrametric spaces X with |X| ≥  2 are not rigid since for every such X there is a self-isometry having exactly |X|−2 fixed points. Using the representing trees we characterize the finite ultrametric spaces X for which every self-isometry has at least |X|−2 fixed points. Some other extremal properties of such spaces and related graph theoretical characterizations are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Bondy and U. S. R. Murty, Graph Theory. Grad. Texts Math. 244, Springer, New York, 2008.

  2. E. D. Demaine, G. M. Landau and O. Weimann, On Cartesian trees and range minimum queries. In: Proceedings of the 36th International Colloquium, ICALP 2009, Rhodes, Greece, 2009, Part I, Lecture Notes in Comput. Sci. 5555, Springer, Berlin, 2009, 341–353.

  3. R. Diestel, Graph Theory. 3rd ed., Grad. Texts in Math. 173, Springer, Berlin, 2005.

  4. Dordovskyi D., Dovgoshey O., Petrov E.: Diameter and diametrical pairs of points in ultrametric spaces. p-Adic Numbers Ultrametric Anal. Appl. 3, 253–262 (2011)

    MATH  Google Scholar 

  5. O. Dovgoshey and E. Petrov, Subdominant pseudoultrametric on graphs. Sb. Math. 204 (2013), 1131–1151 [Translated from Mat. Sb. 204 (2013), 51–72].

  6. Dovgoshey O., Petrov E.: Weak similarities of metric and semimetric spaces. Acta Math. Hungar. 141, 301–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dovgoshey O., Petrov E., Teichert H.-M.: On spaces extremal for the Gomory-Hu inequality. p-Adic Numbers Ultrametric Anal. Appl. 7, 133–142 (2015)

    MATH  Google Scholar 

  8. Fiedler M.: Ultrametric sets in Euclidean point spaces. Electron. J. Linear Algebra 3, 23–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gomory R. E., Hu T. C.: Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9, 551–570 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurvich V., Vyalyi M.: Characterizing (quasi-)ultrametric finite spaces in terms of (directed) graphs. Discrete Appl. Math. 160, 1742–1756 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Gurvich and M. Vyalyi, Ultrametrics, trees, flows, and bottleneck arcs. Mathematical Education, series 3, vol. 16, MCCME, Moscow, 2012 (In Russian).

  12. Holly J. E.: Pictures of Ultrametric Spaces, the p-Adic Numbers, and Valued Fields. Amer. Math. Monthly 108, 721–728 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hughes B.: Trees and ultrametric spaces: A categorical equivalence. Adv. Math. 189, 148–191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hughes B.: Trees, ultrametrics, and noncommutative geometry. Pure Appl. Math. Q. 8, 221–312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirk W. A., Shahzad N.: Some fixed point results in ultrametric spaces. Topology Appl. 159, 3327–3334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. A. Kirk and N. Shahzad, Fixed point theory in distance spaces. Springer, Cham, 2014.

  17. A. J. Lemin, On Gelgfand’s problem concerning graphs, lattices, and ultrametric spaces. AAA62 – Workshop on General Algebra, 2001, 12–13.

  18. Lemin A. J.: The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*. Algebra Universalis 50, 35–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Petrov E.A.: Ball-preserving mappings of finite ulrametric spaces. Proceedings of IAMM 26, 150–158 (2013) (In Russian)

    Google Scholar 

  20. E. Petrov and A. Dovgoshey, On the Gomory-Hu inequality. J. Math. Sci. 198 (2014), 392–411 [Translated from Ukr. Mat. Visn. 10 (2013), 469–496].

  21. Priess-Crampe S., Ribenboim P.: Fixed point and attractor theorems for ultrametric spaces. Forum Math. 12, 53–64 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Priess-Crampe S., Ribenboim P.: The approximation to a fixed point. J. Fixed Point Theory Appl. 14, 41–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Petrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovgoshey, O., Petrov, E. & Teichert, HM. How rigid the finite ultrametric spaces can be?. J. Fixed Point Theory Appl. 19, 1083–1102 (2017). https://doi.org/10.1007/s11784-016-0329-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0329-5

Mathematics Subject Classification

Keywords

Navigation