Skip to main content
Log in

Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the nonlinear stationary Schrödinger equation

$$\begin{aligned} -\Delta u -\lambda u= Q(x)|u|^{p-2}u, \qquad \text {in }\mathbb {R}^N \end{aligned}$$

in the case where \(N \ge 3\), p is a superlinear, subcritical exponent, Q is a bounded, nonnegative and nontrivial weight function with compact support in \(\mathbb {R}^N\) and \(\lambda \in \mathbb {R}\) is a parameter. Under further restrictions either on the exponent p or on the shape of Q, we establish the existence of a continuous branch \(\mathcal {C}\) of nontrivial solutions to this equation which intersects \(\{\lambda \} \times L^{s}(\mathbb {R}^N)\) for every \(\lambda \in (-\infty , \lambda _Q)\) and \(s> \frac{2N}{N-1}\). Here, \(\lambda _Q>0\) is an explicit positive constant which only depends on N and \(\text {diam}(\text {supp }Q)\). In particular, the set of values \(\lambda \) along the branch enters the essential spectrum of the operator \(-\Delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H., López-Gómez, J.: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Differ. Equ. 146, 336–374 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Badiale, M.: Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15(2):233–252 (1998)

  3. Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A 128(6), 1131–1161 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Badiale, M., Pomponio, A.: Bifurcation results for semilinear elliptic problems in \(\mathbb{R}^N\). Proc. Roy. Soc. Edinburgh Sect. A 134(1), 11–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(1-2):69–94 (1997) (Dedicated to Ennio De Giorgi)

  6. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal. 4(1), 59–78 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82(4), 347–375 (1983)

    MATH  MathSciNet  Google Scholar 

  9. Brézis, H., Turner, R.E.L.: On a class of superlinear elliptic problems. Comm. Partial Differ. Equ. 2(6), 601–614 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao, D.M.: Eigenvalue problems and bifurcation of semilinear elliptic equation in \({ R}^N\). Nonlinear Anal. 24(4), 529–554 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dancer, E.N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J., 23:1069–1076 (1973/74)

  12. Dancer, E.N.: Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one. Bull. London Math. Soc. 34(5), 533–538 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ding, W.Y., Ni, W.-M.: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rational Mech. Anal. 91(4), 283–308 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Differ. Equ. 10(8), 841–860 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Evéquoz, G.: A dual approach in Orlicz spaces for the nonlinear Helmholtz equation. Z. Angew. Math. Phys. 66(6), 2995–3015 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evéquoz, G., Weth, T.: Real solutions to the nonlinear Helmholtz equation with local nonlinearity. Arch. Rat. Mech. Anal. 211(2), 359–388 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evéquoz, G., Weth, T.: Dual variational methods and nonvanishing for the nonlinear Helmholtz equation. Adv. Math. 280, 690–728 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gel’fand, I.M.: Generalized functions. Properties and operations, vol. 1. Academi Press, New York, translated from the Russian by Eugene Saletan (1964)

  20. Giacomoni, J.: Global bifurcation results for semilinear elliptic problems in \(\mathbf{R}^N\). Comm. Partial Differ. Equ. 23(11–12), 1875–1927 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6(8), 883–901 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Heinz, H.-P.: Nodal properties and bifurcation from the essential spectrum for a class of nonlinear Sturm-Liouville problems. J. Differ. Equ. 64(1), 79–108 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Küpper, T.: The lowest point of the continuous spectrum as a bifurcation point. J. Differ. Equ. 34(2), 212–217 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lebedev, N.N., Special functions and their applications. Dover Publications Inc., New York, : Revised edition, translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman (1972)

  26. Li, H., Sun, J.: Positive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity. Comput. Math. Appl. 58(9), 1808–1815 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ma, R., An, Y.: Global structure of positive solutions for nonlocal boundary value problems involving integral conditions. Nonlinear Anal. 71(10), 4364–4376 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Magnus, R.J.: On perturbations of a translationally-invariant differential equation. Proc. Roy. Soc. Edinburgh Sect. A 110(1–2), 1–25 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations. In Nonlinear elliptic and parabolic problems, volume 64 of Progr. Nonlinear Differential Equations Appl., pages 391–402. Birkhäuser, Basel (2005)

  30. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ramos, M., Terracini, S., Troestler, C.: Superlinear indefinite elliptic problems and Pohožaev type identities. J. Funct. Anal. 159(2), 596–628 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rother, W.: Bifurcation of nonlinear elliptic equations on \({ R}^N\). Bull. London Math. Soc. 21(6), 567–572 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stuart, C.A.: Bifurcation for variational problems when the linearisation has no eigenvalues. J. Funct. Anal. 38(2), 169–187 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stuart, C.A.: Bifurcation from the continuous spectrum in the \(L^2\)-theory of elliptic equations on \({\bf R}^n\). In Recent methods in nonlinear analysis and applications (Naples, 1980), pages 231–300. Liguori, Naples (1981)

  36. Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. (3), 45(1), 169–192 (1982)

  37. Stuart, C.A.: A global branch of solutions to a semilinear equation on an unbounded interval. Proc. Roy. Soc. Edinburgh Sect. A 101(3–4), 273–282 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stuart, C.A.: Bifurcation in \(L^p({\bf R}^N)\) for a semilinear elliptic equation. Proc. London Math. Soc. 57(3), 511–541 (1988)

  39. Stuart, C.A.: Bifurcation of homoclinic orbits and bifurcation from the essential spectrum. SIAM J. Math. Anal. 20(5), 1145–1171 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  40. Stuart C.A.: Bifurcation from the essential spectrum. In Topological nonlinear analysis, II (Frascati, 1995), volume 27 of Progr. Nonlinear Differential Equations Appl., pages 397–443. Birkhäuser Boston, Boston, MA (1997)

  41. Toland, J.F.: Positive solutions of nonlinear elliptic equations–existence and nonexistence of solutions with radial symmetry in \(L_{p}({ R}^{N})\). Trans. Amer. Math. Soc. 282(1), 335–354 (1984)

    MATH  MathSciNet  Google Scholar 

  42. Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition

  43. Weth, T.: Global bifurcation branches for radially symmetric Schrödinger equations. Adv. Differ. Equ. 10(7), 721–746 (2005)

    MATH  Google Scholar 

  44. Whyburn, G.T.: Topological analysis. Second, revised edition. Princeton Mathematical Series, No. 23. Princeton University Press, Princeton, NJ (1964)

  45. Zeidler, E.: Nonlinear functional analysis and its applications, I Fixed-point theorems. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  46. Zhu, X.P., Zhou, H.S.: Bifurcation from the essential spectrum of superlinear elliptic equations. Appl. Anal. 28(1), 51–66 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant WE 2821/5-1 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Evéquoz.

Additional information

Dedicated to Paul H. Rabinowitz with admiration and appreciation.

Appendix

Appendix

In this section, we add a result from general topology which has been used in the proof of Theorem 5.2. It is a variant of a classical Lemma by Whyburn (see [44, Theorem (9.1)]). For similar variants which have inspired the following proposition, see [26, 27].

Proposition 6.1

Let (Xd) be a locally compact metric space, \(z_* \in X\), and let \({\mathcal C}_n \subset X\), \(n \in \mathbb {N}\) be connected subsets satisfying the following assumptions.

  1. (i)

    There exist points \(z_n \in {\mathcal C}_n\), \(n \in \mathbb {N}\) such that \(z_n \rightarrow z_* \in X\) as \(n \rightarrow \infty \).

  2. (ii)

    The sets \(\bigcup _{n \ge m} {\mathcal C}_n\), \(m \in \mathbb {N}\) are not relatively compact in (Xd).

Then, the connected component \({\mathcal C}\subset X\) of X which contains \(z_*\) is not relatively compact.

For the proof of this proposition, we need the following well-known result (see [44]).

Lemma 6.2

Suppose that (Xd) is a compact metric space, A and B are disjoint closed subsets of X, and suppose that no connected component of X intersects both A and B. Then, there exist two disjoint compact subsets \(X_A, X_B \subset X\) such that \(A \subset X_A\), \(B \subset X_B\) and \(X = X_A \cup X_B\).

Proof of Proposition 6.1

We suppose by contradiction that \({\mathcal C}\) is relatively compact. Since, by definition, \({\mathcal C}\subset X\) is closed, it follows that \({\mathcal C}\) is compact. Since X is locally compact, there exists a compact neighborhood \(V \subset X\) of the set \({\mathcal C}\). Then, \({\mathcal C}\) and \(\partial V\) are non-intersecting closed subsets contained in the compact metric space (Vd), and the maximal connectedness of \({\mathcal C}\) implies that that there does not exist a connected component of V which intersects \({\mathcal C}\) and \(\partial V\). By Lemma 6.2, there exist disjoint compact subsets \(X_A, X_B \subset V\) such that \({\mathcal C}\subset X_A\), \(\partial V \subset X_B\) and

$$\begin{aligned} V = X_A \cup X_B. \end{aligned}$$
(6.1)

We may then choose a compact neighborhood \(V_1 \subset X\) of \(X_A\) such that \(V_1 \cap X_B= \varnothing \), and we consider the compact set \(V_2= V \cap V_1\). We have

$$\begin{aligned} \partial V_2 \subset [\partial V \cap V_1] \cup [\partial V_1 \cap V] \subset V \cap V_1, \end{aligned}$$

and thus, it follows that

$$\begin{aligned} \partial V_2 \cap X_A= \varnothing = \partial V_2 \cap X_B. \end{aligned}$$

Consequently,

$$\begin{aligned} \partial V_2 = \varnothing \end{aligned}$$
(6.2)

by (6.1), which implies, in particular, that \(V_2\) is also open in X. On the other hand, since \(z_* \in {\mathcal C}\subset X_A \subset V_2\), there exists \(n_0 \in \mathbb {N}\) such that \(z_n \in V_2\) for \(n \ge n_0\), which means that \({\mathcal C}_n \cap V_2 \not = \varnothing \) for \(n \ge n_0\). The connectedness of \({\mathcal C}_n\) and (6.2) then imply that

$$\begin{aligned} {\mathcal C}_n \subset V_2 \qquad \text {for } \;n \ge n_0, \end{aligned}$$

but this contradicts assumption (ii) since \(V_2\) is compact. Thus, the proof is finished. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evéquoz, G., Weth, T. Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation. J. Fixed Point Theory Appl. 19, 475–502 (2017). https://doi.org/10.1007/s11784-016-0362-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0362-4

Keywords

Mathematics Subject Classification

Navigation