Skip to main content
Log in

Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We investigate the effect of dispersal and spatial heterogeneity of the environment on the dynamics of a predator–prey model. In contrast with the homogeneous environment, the dynamics of the model in spatially heterogeneous environment is more complex. For instance, for certain ranges of death and dispersal rates of the predator, the semi-trivial steady state of the model in the heterogeneous case could change its stability multiple times as the dispersal rate of the prey varies from small to large, whereas the stability of the semi-trivial steady state is unaffected by the dispersal rates of the predator and prey in the homogeneous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Averill, I., Lam, K.-Y., Lou, Y.: The role of advection in a two-species competition model: a bifurcation approach. Mem. Am. Math. Soc. 245(1161) (2017) (in press)

  2. Bai, X.L., He, X.Q., Li, F.: An optimization problem and its application in population dynamics. Proc. AMS 144, 2161–2170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cantrell, R.S., Conser, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. R. Soc. Edin. Sect. A 112, 293–318 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantrell, R.S., Conser, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Bio. 29, 315–338 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantrell, R.S., Conser, C.: Spatial Ecology via Reaction-diffusion Equations. Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    Google Scholar 

  6. Cantrell, R.S., Conser, C., Hutson, V.: Permanence in ecological systems with spatial heterogeneity. Proc. R. Soc. Edin. Sect. A 123, 533–559 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cosner, C.: Reaction-diffusion-advection models for the effects and evolution of dispersal. Discr. Cont. Dyn. Syst. 34, 1701–1745 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.F., Hambrock, R., Lou, Y.: Evolution of conditional: a reaction-diffusion-advection model. J. Math. Biol. 57, 3687–3703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, R.H., Lou, Y.: Spatial SIS epidemic models in advective environments. J. Differ. Equations 261, 3305–3343 (2016)

    Article  MATH  Google Scholar 

  10. Dancer, E.N., Du, Y.H.: Effects of certain degeneracies in the predator-prey model. SIAM J. Math. Anal. 34, 292–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. DeAngelis, D., Ni, W.-M., Zhang, B.: Dispersal and spatial heterogeneity: single species. J. Math. Biol. 72, 239–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Y.H., Hsu, S.B.: A diffusive predator-prey model in heterogeneous environment. J. Differ. Equations 203, 331–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y.H. Du, J.P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous envionment. In: Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., vol. 48, pp. 95–135. American Mathematical Society, Providence, R.I. (2006)

  14. Du, Y.H., Shi, J.P.: Allee effect and bistability in a spatially heterogenous predator-prey model. Trans. Am. Math. Soc. 359, 4557–4593 (2007)

    Article  MATH  Google Scholar 

  15. He, X.Q., Ni, W.M.: The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity. J. Differ. Equations 254, 528–546 (2013)

  16. He, X.Q., Ni, W.-M.: The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system II: The general case. J. Differ. Equations 254, 4088–4108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, X.Q., Ni, W.-M.: Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity. I. Commun. Pure Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lam, K.-Y., Lou, Y., Lutscher, F.: The emergence of range limits in advective environments. SIAM J. Appl. Math 76, 641–662 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lam, K.-Y., Lou, Y., Lutscher, F.: Evolution of dispersal in closed advective environments. J. Biol. Dyn. 9(Supplement 1), 188–212 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lam, K.-Y., Ni, W.-M.: Uniquenss and complete dynamics of the Lotka-Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, S., Lou, Y.: On the dependence of population size upon random dispersal rate. Discr. Cont. Dyn. Syst. Ser. B. 17, 2771–2788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equations 223, 400–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lou, Y.: Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Friedman, A. (ed.) Tutor. Math. Biosci. vol IV: Evolution and Ecology, Lect. Notes Mathematics vol. 1922, pp. 171–205. Springer, New York (2007)

  24. Lou, Y.: Some reaction diffusion models in spatial ecology. Sci. Sin. Math. 45(10), 1619–1634 (2015)

    Google Scholar 

  25. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. In: Appl. Math. vol. 82. SIAM, Philadelphia (2011)

  27. Peng, R., Shi, J.P.: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case. J. Differ. Equations 247, 866–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, J.F., Wei, J.J., Shi, J.P.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J. Differ. Equations 260, 3495–3523 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equations 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referee for his helpful comments and suggestions. We thank Dr. Renhao Cui for his help with the figures and Ms. Rui Li for her helpful comments. This research is partially supported by NSFC Grants Nos. 11571364 and 11571363 (YL), NSF Grant DMS-1411476 (YL) and China Scholarship Council (BW). Part of this work was done during the visit of YL to Tokyo Institute of Technology and the visit of BW to Ohio State University. We thank both institutions for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Lou.

Additional information

Dedicated to Professor Paul Rabinowitz on the occasion of his 77th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Wang, B. Local dynamics of a diffusive predator–prey model in spatially heterogeneous environment. J. Fixed Point Theory Appl. 19, 755–772 (2017). https://doi.org/10.1007/s11784-016-0372-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0372-2

Keywords

Mathematics Subject Classification

Navigation