Skip to main content
Log in

A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Our interest in this paper is to prove a strong convergence result for finding a zero of the sum of two monotone operators, with one of the two operators being co-coercive using an iterative method which is a combination of Nesterov’s acceleration scheme and Haugazeau’s algorithm in real Hilbert spaces. Our numerical results show that the proposed algorithm converges faster than the un-accelerated Haugazeau’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179(1), 278–310 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward–backward method is actually faster than \(\frac{1}{k^2}\). SIAM J. Optim. 26, 1824–1834 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: Analysis, Algorithms and Engineering Applications. MPS-SIAM series on optimization, SIAM, Philadelphia (2001). ISBN: 978-0-89871-491-3

  9. Berinde, V.: Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, vol. 1912. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Program. Stud. 17, 139–159 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MATH  MathSciNet  Google Scholar 

  15. Bot, R.I., Csetnek, E.R.: An inertial forward–backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithm 71, 519–540 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MATH  MathSciNet  Google Scholar 

  18. Byrne, C.: unified treatment of some algorithms in signal processing and image construction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  Google Scholar 

  19. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, vol. 2057. Springer, Berlin (2012)

    MATH  Google Scholar 

  20. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, S., Donoho, D.L., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations. In: Springer Series: Lecture Notes in Mathematics, Vol. 1965 (2009) ISBN: 978-1-84882-189-7

  25. Cholamjiak, P.: A generalized forward–backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithm 71(4), 915–932 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  26. Combettes, P.L.: Solving monotone inclusion via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  29. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  30. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649–664 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Han, D., Lo, H.K.: Solving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities. Eur. J. Oper. Res. 159, 529–544 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Haugazeau, Y.: Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes. Université de Paris, Paris, France, Thèse (1968)

  33. Iiduka, H., Takahashi, W.: Strong convergence theorem by a hybrid method for nonlinear mappings of nonexpansive and monotone type and applications. Adv. Nonlinear Var. Inequal. 9, 1–10 (2006)

    MATH  MathSciNet  Google Scholar 

  34. López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward–Backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal.2012 (2010). Article ID 109236

  35. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lorenz, D., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  37. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Matinez-Yanes, C., Xu, H.-K.: Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 64, 2400–2411 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Matsushita, S., Takahashi, W.: Approximating fixed points of nonexpansive mappings in a Banach space by metric projections. Appl. Math. Comput. 196, 422–425 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(O(\frac{1}{k^2})\). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)

    MathSciNet  Google Scholar 

  45. Nesterov, Y.: Quelques proprietes des operateurs angle-bornes et \(n\)-cycliquement monotones. Isreal J. Math. 26, 137–150 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ochs, P., Brox, T., Pock, T.: iPiasco: Inertial Proximal Algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  47. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)

    Google Scholar 

  48. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  49. Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic and eliptic differentials. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  Google Scholar 

  50. Podilchuk, C.I., Mammone, R.J.: Image recovery by convex projections using a least-squares constraint. J. Opt. Soc. Am. A 7, 517–521 (1990)

    Article  Google Scholar 

  51. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  52. Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  53. Qin, X., Cho, S.Y., Wang, L.: Convergence of splitting algorithms for the sum of two accretive operators with applications. Fixed Point Theory Appl. 2014, 166 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  54. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  55. Sahu, D.R., Xu, H.-K., Yao, J.C.: Asymptotically strictly pseudocontractive mappings in the intermediate sense. Nonlinear Anal. 70, 3502–3511 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shehu, Y.: Iterative approximations for zeros of sum of accretive operators in Banach spaces. J. Funct. Spaces 2016. Article ID 5973468 (2016). doi:10.1155/2016/5973468

  57. Shioji, N., Takahashi, W.: Strong convergence theorems for asymptotically nonexpansive semi-groups in Hilbert spaces. Nonlinear Anal. 34, 87–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  58. Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Optim. 1(1), 35–43 (2010)

    MathSciNet  Google Scholar 

  59. Takahashi, W.: Proximal point algorithms and four resolvents of nonlinear operators of monotone type in Banach spaces. Taiwan. J. Math. 12(8), 1883–1910 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  60. Tibshirami, R.: Regression shrinkage and selection via lasso. J. R. Statist. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  Google Scholar 

  61. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Global Optim. 54, 485–491 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  63. Wang, C.Y., Xiu, N.H.: Convergence of gradient projection methods for generalized convex minimization. Comput. Optim. Appl. 16, 111–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  64. Wang, Y., Xu, H.-K.: Strong convergence for the proximal-gradient method. J. Nonlinear Convex Anal. 15, 581–593 (2014)

    MATH  MathSciNet  Google Scholar 

  65. Wei, L., Duan, L.: A new iterative algorithm for the sum of two different types of finitely many accretive operators in Banach space and its connection with capillarity equation. Fixed Point Theory Appl. 2015, 25 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  66. Wei, L., Shi, A.: Splitting-midpoint method for zeros of the sum of accretive operator and \(\mu \)-inversely strongly accretive operator in a \(q\)-uniformly smooth Banach space and its applications. J. Inequal. Appl. 2015, 183 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  67. Xiu, N., Wang, D., Kong, L.: A note on the gradient projection method with exact stepsize rule. J. Comput. Math. 25, 221–230 (2007)

    MATH  MathSciNet  Google Scholar 

  68. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150(2), 360–378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  69. Yao, Y., Kang, S.M., Jigang, W., Yang, P.-X.: A regularized gradient projection method for the minimization problem. J. Appl. Math. 2012. Article ID 259813. doi:10.1155/2012/259813

  70. Youla, D.: On deterministic convergence of iterations of related projection mappings. J. Vis. Commun. Image Represent 1, 12–20 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out when the Fourth Author was an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany. He is grateful to the Alexander von Humboldt Foundation, Bonn, for the fellowship and the Institute of Mathematics, Julius Maximilian University of Wurzburg, Germany for the hospitality and facilities. P. Cholamjiak was supported by the Thailand Research Fund and the Commission on Higher Education under Grant MRG5980248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Jiang, D., Cholamjiak, P. et al. A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19, 3097–3118 (2017). https://doi.org/10.1007/s11784-017-0472-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0472-7

Mathematics Subject Classification

Keywords

Navigation