Skip to main content
Log in

A new method for solving split variational inequality problems without co-coerciveness

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In solving the split variational inequality problems in real Hilbert spaces, the co-coercive assumption of the underlying operators is usually required and this may limit its usefulness in many applications. To have these operators freed from the usual and restrictive co-coercive assumption, we propose a method for solving the split variational inequality problem in two real Hilbert spaces without the co-coerciveness assumption on the operators. We prove that the proposed method converges strongly to a solution of the problem and give some numerical illustrations of it in comparison with other methods in the literature to support our strong convergence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586

    Article  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  3. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  4. Byrne, C.: A unified treatment for some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  5. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  7. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T., Kopf, N., Bortfield, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer Verlag Series, Lecture Notes in Mathematics. ISBN 978-1-84882-189-7 (2009)

  11. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34, 138–142 (1963)

    MATH  Google Scholar 

  12. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  Google Scholar 

  13. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  14. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 66–173 (2006)

    Article  MathSciNet  Google Scholar 

  15. Hendrickx, J.M., Olshevsky, A.: Matrix \(P\)-norms are NP-hard to approximate if \(P\ne 1, 2,\infty \). SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  17. Izuchukwu, C., Okeke, C.C., Mewomo, O.T.: Systems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappings. Ukrain. Math. J. 71, 1480–1501 (2019)

    Google Scholar 

  18. Izuchukwu, C., Okeke, C.C., Isiogugu, F.O.: Viscosity iterative technique for split variational inclusion problem and fixed point problem between Hilbert space and Banach space. J. Fixed Point Theory Appl. 20, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space. Optimization (2020). https://doi.org/10.1080/02331934.2020.1716752

    Article  MATH  Google Scholar 

  20. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math. (2019a). https://doi.org/10.1007/s40314-019-1014-2

    Article  MATH  Google Scholar 

  21. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces. Demonstr. Math. 52, 183–203 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kazmi, K.R.: Split nonconvex variational inequality problem. Math. Sci. 7, 20 (2013). https://doi.org/10.1186/2251-7456

    Article  MathSciNet  MATH  Google Scholar 

  23. Kazmi, K.R.: Split general quasi-variational inequality problem. Georg. Math. J. 22(3), 1–8 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Kim, J.K., Salahuddin, S., Lim, W.H.: General nonconvex split variational inequality problems. Korean J. Math. 25, 469–481 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Long, L.V., Thong, D.V., Dung, V.T.: New algorithms for the split variational inclusion problems and application to split feasibility problems. Optimization 68, 2335–2363 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problem. Adv. Pure Appl. Math. 10(4), 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  27. Pham, V.H., Nguyen, D.H., Anh, T.V.: A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem. Vietnam J. Math. 48, 187–204 (2020)

    Article  MathSciNet  Google Scholar 

  28. Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithms 83, 789–805 (2020)

    Article  MathSciNet  Google Scholar 

  29. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    Article  MathSciNet  Google Scholar 

  30. Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  Google Scholar 

  31. Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56, 20 (2019). https://doi.org/10.1007/s10092-018-0300-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and Split Common Fixed point problems. Bull. Malays. Math. Sci. Soc. 43(2), 1893–1918 (2020)

    Article  MathSciNet  Google Scholar 

  33. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  34. Stampacchia, G.: “Variational Inequalities”. In: Theory and Applications of Monotone Operators. Proceedings of the NATO Advanced Study Institute, Venice, Italy (Edizioni Odersi, Gubbio, Italy, 1968), pp 102–192

  35. Tang, Y., Gibali, A.: New self-adaptive step size algorithms for solving split variational inclusion problems and its applications. Numer. Algorithms 83, 305–331 (2020)

    Article  MathSciNet  Google Scholar 

  36. Tuyen, T.M., Thuy, N.T., Trang, N.M.: A strong convergence theorem for a parallel iterative method for solving the split common null point problem in Hilbert Spaces. J. Optim. Theory Appl. 183, 271–291 (2019)

    Article  MathSciNet  Google Scholar 

  37. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)

    Article  MathSciNet  Google Scholar 

  38. Thong, D.V., Cholamjiak, P.: Strong convergence of a forward-backward splitting method with a new step size for solving monotone inclusions. Comput. Appl. Math. 38, 20 (2019). https://doi.org/10.1007/s40314-019-0855-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer Algorithms 84, 795–823 (2020)

    Article  MathSciNet  Google Scholar 

  40. Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Ineq. Appl. (2017). https://doi.org/10.1186/s13660-017-1397-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian, M., Jiang, B.-N.: Viscosity approximation Methods for a Class of generalized split feasibility problems with variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 40, 902–923 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referees for their careful reading, constructive comments and fruitful suggestions that substantially improved the manuscript. The research of the first author is wholly supported by the National Research Foundation (NRF) South Africa (S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant number: 120784). The first author also acknowledges the financial support from DSI/NRF, South Africa Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The second author acknowledges the bursary and financial support from Department of Science and Innovation and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DSI-NRF COE-MaSS) Doctoral Bursary. The third author is supported by the NRF of South Africa Incentive Funding for Rated Researchers (Grant number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to NRF or CoE-MaSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. T. Mewomo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izuchukwu, C., Mebawondu, A.A. & Mewomo, O.T. A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22, 98 (2020). https://doi.org/10.1007/s11784-020-00834-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00834-0

Keywords

Mathematics Subject Classification

Navigation