Skip to main content
Log in

Rigidity Theorems for Spherical Hyperexpansions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The class of spherical hyperexpansions is a multi-variable analog of the class of hyperexpansive operators with spherical isometries and spherical 2-isometries being special subclasses. It is known that in dimension one, an invertible \(2\)-hyperexpansion is unitary. This rigidity theorem allows one to prove a variant of the Berger–Shaw Theorem which states that a finitely multi-cyclic \(2\)-hyperexpansion is essentially normal. In the present paper, we seek for multi-variable manifestations of this rigidity theorem. In particular, we provide several conditions on a spherical hyperexpansion which ensure it to be a spherical isometry. We further carry out the analysis of the rigidity theorems at the Calkin algebra level and obtain some conditions for essential normality of a spherical hyperexpansion. In the process, we construct several interesting examples of spherical hyperexpansions which are structurally different from the Drury-Arveson \(m\)-shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler, J., Stankus, M.: m-isometric transformations of Hilbert spaces, I. Integr. Equ. Oper. Theory 21, 383–429 (1995)

    Google Scholar 

  2. Agler, J., Stankus, M.: m-isometric transformations of Hilbert spaces, II. Integr. Equ. Oper. Theory 23, 1–48 (1995)

    Google Scholar 

  3. Agler, J., Stankus, M.: m-isometric transformations of Hilbert space, III. Integr. Equ. Oper. Theory 24, 379–421 (1996)

    Google Scholar 

  4. Aleman, A.: The multiplication operators on Hilbert spaces of analytic functions. Habilitationsschrift, Fernunuversitat Hagen (1993)

  5. Arveson, W.: Subalgebras of \(C^*\)-algebras. III. Multivariable operator theory. Acta Math. 181, 159–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arveson, W.: Several Problems in Operator Theory, Unpublished Lecture Notes (2003)

  7. Athavale, A.: On joint hyponormality of operators. Proc. Am. Math. Soc. 103, 417–423 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Athavale, A.: On the intertwining of joint isometries. J. Oper. Theory 23, 339–350 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Athavale, A.: Some operator theoretic calculus for positive definite kernels. Proc. Am. Math. Soc. 112, 701–708 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Athavale, A.: On completely hyperexpansive operators. Proc. Am. Math. Soc. 124, 3745–3752 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Athavale, A., Sholapurkar, V.: Completely hyperexpansive operator tuples. Positivity 3, 245–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chavan, S.: On operators Cauchy dual to 2-hyperexpansive operators. Proc. Edin. Math. Soc. 50, 637–652 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chavan, S.: On operators close to isometries. Studia Math. 186, 275–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chavan, S.: \(C^*\)-algebras generated by spherical hyperexpansions, preprint (2012)

  15. Chavan, S.: Essential normality of operators close to isometries. Integr. Equ. Oper. Theory 73, 49–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chavan, S., Curto, R.: Operators Cauchy dual to 2-hyperexpansive operators: the multivariable case. Integr. Equ. Oper. Theory 73, 481–516 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ch\(\bar{\text{ o}}\), M., \(\dot{\text{ Z}}\)elazko, W.: On the geometric radius of commuting \(n\)-tuples of operators. Hokkaido Math. J. 21 251–258 (1992)

  18. Conway, J.: A Course in Functional Analysis. Springer, New York (1997)

    Google Scholar 

  19. Conway, J.: The Theory of Subnormal Operators. Math. Surveys Monographs, vol 36. Am. Math. Soc., Providence (1991)

  20. Curto, R.: On the connectedness of invertible \(m\)-tuples. Indiana Univ. Math. J. 29, 393–406 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Curto, R.: Applications of several complex variables to multiparameter spectral theory. Surveys of some recent results in operator theory, vol. II, pp. 25–90. Pitman Res. Notes Math. Ser. 192, Longman Sci. Tech., Harlow (1988)

  22. Curto, R., Salinas, N.: Spectral properties of cyclic subnormal \(m\)-tuples. Am. J. Math. 107, 113–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Curto, R., Vasilescu, F.: Standard operator models in the polydisc-I. Indiana Univ. Math. J. 42, 979–989 (1993)

    Article  MathSciNet  Google Scholar 

  24. Curto, R., Vasilescu, F.: Standard operator models in the polydisc-II. Indiana Univ. Math. J. 44, 727–746 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Drury, S.: A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68, 300–304 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Douglas, R., Yan, K.: A multi-variable Berger-Shaw theorem. J. Oper. Theory 27, 205–217 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Eschmeier, J.: Essential normality of homogeneous submodules. Integr. Equ. Oper. Theory 69, 171–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Eschmeier, J., Putinar, M.: Some remarks on spherical isometries. In: Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), pp. 271–291, Oper. Theory Adv. Appl. 129, Birkhäuser, Basel (2001)

  29. Gleason, J., Richter, S.: m-Isometric commuting tuples of operators on a Hilbert space. Integr. Equ. Oper. theory 56, 181–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jabloński, Z., Stochel, J.: Unbounded 2-hyperexpansive operators. Proc. Edin. Math. Soc. 44, 613–629 (2001)

    Article  MATH  Google Scholar 

  31. Lubin, A.: Weighted shifts and products of subnormal operators. Indiana Univ. Math. J. 26, 839–845 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martin, M., Putinar, M.: Lectures on hyponormal operators. In: Operator Theory: Advances and Applications, vol. 39. Birkhäuser, Basel (1989)

  33. Muneo, C., Takaguchi, M.: Boundary of the Taylor’s joint spectrum for two commuting operators. Rev. Roumaine Math. Pures Appl. 27, 863–866 (1982)

    MathSciNet  MATH  Google Scholar 

  34. M\(\ddot{\text{ u}}\)ller, V., Soltysiak, A.: Spectral radius formula for commuting Hilbert space operators. Studia Math. 103, 329–333 (1992)

  35. Richter, S., Sundberg, C.: Joint extensions in families of contractive commuting operator tuples. J. Funct. Anal. 258, 3319–3346 (2010)

    Google Scholar 

  36. Richter, S.: Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math. 386, 205–220 (1988)

    MathSciNet  MATH  Google Scholar 

  37. Shields, A.: Weighted shift operators and analytic function theory. In: Topics in Operator Theory, Math. Surveys Monographs, vol. 13, pp. 49–128. Am. Math. Soc., Providence (1974)

  38. Shimorin, S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 531, 147–189 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Sholapurkar, V., Athavale, A.: Completely and alternatingly hyperexpansive operators. J. Oper. Th. 43, 43–68 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Authors wish to place on record their sincere thanks to the referee for pointing out a couple of careless assesrtions in the original manuscript and also for a number of valuable suggestions for the improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sholapurkar.

Additional information

Communicated by Mihai Putinar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, S., Sholapurkar, V.M. Rigidity Theorems for Spherical Hyperexpansions. Complex Anal. Oper. Theory 7, 1545–1568 (2013). https://doi.org/10.1007/s11785-012-0270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-012-0270-6

Keywords

Mathematics Subject Classification (2000)

Navigation