Skip to main content
Log in

On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation into a vector field distribution on a manifold and thus reduces its analysis to standard problems in dynamical systems theory like the integration of a vector field and the determination of invariant manifolds. For the visualisation of low-dimensional situations we adapt the streamlines algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation in Matlab is discussed and some concrete examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is well-known that the fibration \(\pi ^{q}_{q-1}:J_{q}\pi \rightarrow J_{q-1}\pi \) defines an affine bundle. A differential equation \(\mathcal {R}_{q}\subset J_{q}\pi \) is quasi-linear, if it is an affine subbundle.

  2. https://www.paraview.org.

  3. Note that, strictly speaking, we are dealing here with a vector field on a two-dimensional manifold. If we had a nice parametrisation of the manifold, we could express the vector field X in these parameters and would obtain a \(2\times 2\) Jacobian. As it is in general difficult to find such parametrisations, we use instead the three coordinates of the ambient space \(J_{1}\pi \). Consequently, we obtain a too large Jacobian and must see which two eigenvalues are the right ones. This is easily decided by checking whether the corresponding (generalised) eigenvectors are tangential to \(\mathcal {R}_{1}\).

  4. In [5] it is shown that for these parameter values there are infinitely many solutions reaching the “tip” \(\rho \).

References

  1. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der mathematischen Wissenschaften 250, 2nd edn. Springer, New York (1988)

    Book  Google Scholar 

  2. Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47, 1233–1266 (2012)

    Article  MathSciNet  Google Scholar 

  3. Beyn, W.J., Kleß, W.: Numerical Taylor expansion of invariant manifolds in large dynamical systems. Numer. Math. 80, 1–38 (1998)

    Article  MathSciNet  Google Scholar 

  4. Braun, E.: Numerische Analyse und Visualisierung von voll-impliziten gewöhnlichen Differentialgleichungen. Master thesis, Institut für Mathematik, Universität Kassel (2017)

  5. Brunovský, P., Černý, A., Winkler, M.: A singular differential equation stemming from an optimal control problem in financial economics. Appl. Math. Opt. 68, 255–274 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, C.K., Yan, S., Yu, H., Max, N., Ma, K.L.: An illustrative visualization framework for 3D vector fields. Comput. Graph. Forum 30, 1941–1951 (2011)

    Article  Google Scholar 

  7. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Universitext. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Eirola, T., von Pfaler, J.: Taylor expansion for invariant manifolds. Numer. Math. 80, 1–38 (1998)

    Article  MathSciNet  Google Scholar 

  9. Fesser, D.: On Vessiot’s Theory of Partial Differential Equations. PhD thesis, Fachbereich Mathematik, Universität Kassel (2008)

  10. Fesser, D., Seiler, W.M.: Existence and construction of Vessiot connections. SIGMA 5, 092 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Lefer, W., Grave, M. (eds.) Visualization in Scientific Computing, Eurographics, pp. 43–55. Springer, Berlin (1997)

    Chapter  Google Scholar 

  12. Kant, U., Seiler, W.M.: Singularities in the geometric theory of differential equations. In: Feng, W., Feng, Z., Grasselli, M., Lu, X., Siegmund, S., Voigt, J. (eds.) Dynamical Systems, Differential Equations and Applications (Proceedings of 8th AIMS Conference, Dresden 2010), vol. 2, pp. 784–793. AIMS (2012)

  13. Lychagin, V.V.: Homogeneous geometric structures and homogeneous differential equations. In: Lychagin, V.V. (ed.) The Interplay Between Differential Geometry and Differential Equations, Amer. Math. Soc. Transl. 167, pp. 143–164. Amer. Math. Soc., Providence (1995)

    Google Scholar 

  14. Marchesin, S., Chen, C.K., Ho, C., Ma, K.L.: View-dependent streamlines for 3D vector fields. IEEE Trans. Vis. Comput. Graph. 16, 1578–1586 (2010)

    Article  Google Scholar 

  15. Pommaret, J.F.: Systems of Partial Differential Equations and Lie Pseudogroups. Gordon & Breach, London (1978)

    MATH  Google Scholar 

  16. Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Notes Series 142. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  17. Seiler, W.M.: Involution—The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics 24. Springer, Berlin (2010)

    MATH  Google Scholar 

  18. Seiler, W.M.: Singularities of implicit differential equations and static bifurcations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing—CASC 2013. Lecture Notes in Computer Science 8136, pp. 355–368. Springer, Berlin (2013)

    Google Scholar 

  19. Seiler, W.M., Seiß, M.: Singular initial value problems for quasi-linear ordinary differential equations (2018, in preparation)

  20. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comput. 13, 353–394 (1992)

    Article  MathSciNet  Google Scholar 

  21. Tuomela, J.: On singular points of quasilinear differential and differential–algebraic equations. BIT 37, 968–977 (1997)

    Article  MathSciNet  Google Scholar 

  22. Tuomela, J.: On the resolution of singularities of ordinary differential equations. Numer. Algorithms 19, 247–259 (1998)

    Article  MathSciNet  Google Scholar 

  23. Vessiot, E.: Sur une théorie nouvelle des problèmes généraux d’intégration. Bull. Soc. Math. Fr. 52, 336–395 (1924)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Seiler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially performed as part of the European H2020-FETOPEN-2016-2017-CSA project \(SC^{2}\) (712689) and partially supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, E., Seiler, W.M. & Seiß, M. On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations. Math.Comput.Sci. 14, 281–293 (2020). https://doi.org/10.1007/s11786-019-00423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00423-6

Keywords

Mathematics Subject Classification

Navigation