Skip to main content
Log in

Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives — A review

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups. They have showed significant potentials of removing metal ions, dyes and proteins from various media. Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures. The aims of this review were to summarize the important information of the bioactivities of chitosan, highlight the various preparation methods of chitosan-based active biosorbents, and outline its potential applications in the adsorption of heavy metal ions, dyes and proteins from wastewater and aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, S. J., Noori-Kalkhoran, O., and Shirvani-Arani, S., 2010. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2 2+) ions. Journal of Hazardous Materials, 175: 193–197.

    Article  Google Scholar 

  • Anirudhan, T. S., Rijith, S., and Tharun, A. R., 2010. Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368: 13–22.

    Article  Google Scholar 

  • Anirudhan, T. S., and Rijith, S., 2012. Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. Journal of Environmental Radioactivity, 106: 8–19.

    Article  Google Scholar 

  • Benavente, M., Moreno, L., and Martinez, J., 2011. Sorption of heavy metals from gold mining wastewater using chitosan. Journal of the Taiwan Institute of Chemical Engineers, 42: 976–988.

    Article  Google Scholar 

  • Bhatnagar, A., and Sillanpää, M., 2009. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-A short review. Advances in Colloid and Interface Science, 152: 26–38.

    Article  Google Scholar 

  • Bhaskarapillai, A., Sevilimedu, N. V., and Sellergren, B., 2009. Synthesis and characterization of imprinted polymers for radioactive waste reduction. Industrial & Engineering Chemistry Research, 48: 3730–3737.

    Article  Google Scholar 

  • Bleiman, N., and Mishael, Y. G., 2010. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: Batch and columns tests. Journal of Hazardous Materials, 183: 590–595.

    Article  Google Scholar 

  • Bratskaya, S. Y., Ustinov, A. Y., Azarova, Y. A., and Pestov, A. V., 2011. Thiocarbamoyl chitosan: Synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohydrate Polymers, 85: 854–861.

    Article  Google Scholar 

  • Cárdenas, G., Orlando, P., and Edelio, T., 2001. Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. International Journal of Biological Macromolecules, 28: 167–174.

    Article  Google Scholar 

  • Chang, Y. C., and Chen, D. H., 2009. Highly efficient hydrolysis of phosphodiester by a copper(II)-chelated chitosan magnetic nanocarrier. Reactive & Functional Polymers, 69: 601–605.

    Article  Google Scholar 

  • Chen, L. C., Kung, S. K., Chen, H. H., and Lin, S. B., 2010. Evaluation of zeta potential difference as an indicator for antibacterial strength of low molecular weight chitosan. Carbohydrate Polymers, 82: 913–919.

    Article  Google Scholar 

  • Chen, Y. B., Kele, M., Quinones, I., Sellergren, B., and Guiochon, G., 2001. Influence of the pH on the behavior of an imprinted polymeric stationary phase-supporting evidence for a binding site model. Journal of Chromatography A, 927: 1–17.

    Article  Google Scholar 

  • Chi, P., Wang, J., and Liu, C. S., 2008. Synthesis and characterization of polycationic chitosan-graft-poly (l-lysine). Materials Letters, 62: 147–150.

    Article  Google Scholar 

  • Claude, B., Viron-Lamy, C., Haupt, K., and Morin, P., 2010. Synthesis of a molecularly imprinted polymer for the solid-phase extraction of betulin and betulinic acid from plane bark. Phytochemical Analysis, 21: 180–185.

    Google Scholar 

  • Crini, G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30: 38–70.

    Article  Google Scholar 

  • Crini, G., 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97: 1061–1085.

    Article  Google Scholar 

  • Crini, G., and Badot, P. M., 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solution by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33: 399–447.

    Article  Google Scholar 

  • Dash, M., Chiellini, F., Ottenbrite, R. M., and Chiellini, E., 2011. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981–1014.

    Article  Google Scholar 

  • Dhawan, S., 2004. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics, 274: 1–33.

    Article  Google Scholar 

  • Dutta, P. K., Shipra Tripathi, G. K., and Mehrotra, J. D., 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114: 1173–1182.

    Article  Google Scholar 

  • Fan, L. L., Luo, C. N., Lv, Z., Lu, F. G., and Qiu, H. M., 2011. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. Journal of Hazardous Materials, 194: 193–201.

    Article  Google Scholar 

  • Farzaneh, M., Mehrorang, G., Ardeshir, S., Morteza, M., and Shanaz, D., 2009. Sodium dodecyl sulfate coated poly (vinyl) chloride: An alternative support for solid phase extraction of some transition and heavy metals. Chemosphere, 74: 583–589.

    Article  Google Scholar 

  • Fayek, M., Horita, J., and Ripley E. M., 2011. The oxygen isotopic composition of uranium minerals: A review. Ore Geology Reviews, 41: 1–21.

    Article  Google Scholar 

  • Fu, G. Q., Zhao, J. C., Yu, H., Liu, L., and He, B. L., 2007. Bovine serum albumin-imprinted polymer gels prepared by graft copolymerization of acrylamide on chitosan. Reactive & Functional Polymers, 67: 442–450.

    Article  Google Scholar 

  • Fujiwara, K., Ramesh, A., Maki, T., Hasegawa, H., and Ueda, K., 2007. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. Journal of Hazardous Materials, 146: 39–50.

    Article  Google Scholar 

  • Gan, Q., and Wang, T., 2007. Chitosan nanoparticle as protein delivery carrier-Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces, 59: 24–34.

    Article  Google Scholar 

  • Gandhi, M. R., Kousalya, G. N., Viswanathan, N., and Meenakshi, S., 2011. Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydrate Polymers, 83: 1082–1087.

    Article  Google Scholar 

  • Guibal, E., 2004. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology, 38: 43–74.

    Article  Google Scholar 

  • Guo, T. Y., Xia, Y. Q., Hao, G. J., Song, M. D., and Zhang, B. H., 2004. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 25: 5905–5912.

    Article  Google Scholar 

  • Guo, T. Y., Xia, Y. Q., Wang, J., Song, M. D., and Zhang, B. H., 2005a. Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials, 26: 5737–5745.

    Article  Google Scholar 

  • Guo, T. Y., Xia, Y. Q., Hao, G. J., Zhang, B. H., Fu, G. Q., Yuan, Z., He, B. L., and Kennedy, J. F., 2005b. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydrate Polymers, 62: 214–221.

    Article  Google Scholar 

  • Holzer, L., Münch, B., Rizzi, M., Wepf, R., Marschall, P., and Graule, T., 2010. 3D microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Applied Clay Science, 47: 330–342.

    Article  Google Scholar 

  • Hoven, V. P., Tangpasuthadol, V., Angkitpaiboon, Y., Vallapa, N., and Kiatkamjornwong, S., 2007. Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers, 68: 44–53.

    Article  Google Scholar 

  • Hu, X. J., Wang, J. S., Liu, Y. G., Li, X., Zeng, G. M., Bao, Z. L., Zeng, X. X., Chen, A. W., and Long, F., 2011. Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185: 306–314.

    Article  Google Scholar 

  • Huang, X. D., Zou, H. F., Chen, X. M., Luo, Q. Z., and Kong, L., 2003. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers. Journal of Chromatography A, 984: 273–282.

    Article  Google Scholar 

  • Huang, X. Y., Bin, J. P., Bu, H. T., Jiang, G. B., and Zeng, M. H., 2011. Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers, 84: 1350–1356.

    Article  Google Scholar 

  • Huo, H. Y., Su, H. J., and Tan, T. W., 2009. Adsorption of Ag+ by a surface molecular-imprinted biosorbent. Chemical Engineering Journal, 150: 139–144.

    Article  Google Scholar 

  • Juang, R. S., and Shao, H. J., 2002. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Research, 36: 2999–3008.

    Article  Google Scholar 

  • Kang, Q., Zhou, W. Z., Li, Q., Gao, B. Y., Fan, J. X., and Shen, D. Z., 2009. Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions. Applied Clay Science, 45: 280–287.

    Article  Google Scholar 

  • Kumar, M. N. V. R., 2000. A review of chitin and chitosan applications. Reactive & Functional Polymers, 46: 1–27.

    Article  Google Scholar 

  • Kumar, M., Tripathi, B. P., and Shahi, V. K., 2009. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. Journal of Hazardous Materials, 172: 1041–1048.

    Article  Google Scholar 

  • Kunkoro, E. P., Roussy, J., and Guibal, E., 2005. Mercury recovery by polymer-enhanced ultrafiltration: comparison of chitosan and poly(ethylenimine) used as macrolingand. Separation Science and Technology, 40: 659–684.

    Article  Google Scholar 

  • Kyzas, G. Z., and Lazaridis, N. K., 2009. Reactive and basic dyes removal by sorption onto chitosan derivatives. Journal of Colloid and Interface Science, 331: 32–39.

    Article  Google Scholar 

  • Li, Q., Yue, Q. Y., Sun, H. J., Su, Y., and Gao, B. Y., 2010. A comparative study on the properties, mechanism and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite. Journal of Environmental Management, 91: 1601–1611.

    Article  Google Scholar 

  • Li, X. L., Li, Y. F., and Ye, Z. F., 2011. Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chemical Engineering Journal, 178: 60–68.

    Article  Google Scholar 

  • Lin, S. B., Lin, Y. C., and Chen, H. H., 2009. Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: Characterisation and antibacterial activity. Food Chemistry, 116: 47–53.

    Article  Google Scholar 

  • Liu, B. J., Wang, D. F., Gao, X., Zhang, L., Xu, Y., and Li, Y. J., 2011a. Removal of arsenic from Laminaria japonica Aresch juice using As(III)-imprinted chitosan resin. European Food Research and Technology, 232: 911–917.

    Article  Google Scholar 

  • Liu, B. J., Wang, D. F., Li, H. Y., Xu, Y., and Zhang, L., 2011b. As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As(III) as imprinted ions. Desalination, 272: 286-292.

    Google Scholar 

  • Liu, B. J., Wang, D. F., Xu, Y., and Huang, G. Q., 2011c. Adsorption properties of Cd(II)-imprinted chitosan resin. Journal of Materials Science, 46: 1535–1541.

    Article  Google Scholar 

  • Liu, Y. H., Cao, X. H., Hua, R., Wang, Y. Q., Liu, Y. T., Pang, C., and Wang, Y., 2010. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy, 104: 150–155.

    Article  Google Scholar 

  • Mathialagan, T., and Viraraghavan, T., 2002. Adsorption of cadmium from aqueous solutions by perlite. Journal of Hazardous Materials, B94: 291–303.

    Article  Google Scholar 

  • Monier, M., and El-Sokkary, A. M. A., 2010. Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of l-glutamic acid. International Journal of Biological Macromolecules, 47: 207–213.

    Article  Google Scholar 

  • Moussavi, G., and Mahmoudi, M., 2009. Removal of azo and anthraquinone reactive dyes by using MgO nanoparticles. Journal of Hazardous Materials, 168: 806–812.

    Article  Google Scholar 

  • Muzzarelli, R. A. A., 1973. Natural Chelating Polymers. Pergamon Press, Oxford.

    Google Scholar 

  • Muzzarelli, R. A. A., 2011. Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydrate Polymers, 83: 1433–1445.

    Article  Google Scholar 

  • Nishad, P. A., Bhaskarapillai, A., Velmurugan, S., and Narasimhan, S. V., 2012. Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydrate Polymers, 87: 2690–2696.

    Article  Google Scholar 

  • Popuri, S. R., Vijaya, Y., Boddu, V. M., and Abburi, K., 2009. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100: 194–199.

    Article  Google Scholar 

  • Rachkov, A., and Minoura, N., 2001. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1544: 255–266.

    Article  Google Scholar 

  • Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., and Ueda, K., 2008. Adsorption of gold(III), platinum(W) and palladium( II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99: 3801–3809.

    Article  Google Scholar 

  • Rastegarzadeh, S., Pourreza, N., and Saeedi, I., 2010. An optical chemical sensor for thorium(IV) determination based on thorin. Journal of Hazardous Materials, 173: 110–114.

    Article  Google Scholar 

  • Saeed, A., Fatehi, P., and Ni, Y., 2011. Chitosan as a flocculant for pre-hydrolysis liquor of kraft-based dissolving pulp production process. Carbohydrate Polymers, 86: 1630–1636.

    Article  Google Scholar 

  • Shameem, H., Tushar, K. G., Dabir, S. V., and Veera, M. B., 2008. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. Journal of Hazardous Materials, 152: 826–837.

    Article  Google Scholar 

  • Shen, C. S., Song, S. F., Zang, L. L., Kang, X. D., Wen, Y. Z., Liu, W. P., and Fu, L. S., 2010. Efficient removal of dyes in water using chitosan microsphere supported cobalt(II) tetrasulfophthalocyanine with H2O2. Journal of Hazardous Materials, 177: 560–566.

    Article  Google Scholar 

  • Singh, V., Sharma, A. K., Tripathi, D. N., and Sanghi, R., 2009. Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes. Journal of Hazardous Materials, 161: 955–966.

    Article  Google Scholar 

  • Sinha, V. R., Singla, A. K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., Suntornsuk, W., Pochanavanich, P., and Suntornsuk, L., 2002. Fungal chitosan production on food processing by-products. Process Biochemistry, 37: 727–729.

    Article  Google Scholar 

  • Ska, D. K., 2011. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chemical Engineering Journal, 173: 520–529.

    Article  Google Scholar 

  • Sobahi, T. R., Makki, M. S. I., and Abdelaal, M. Y., 2011. Carrier-mediated blends of Chitosan with polyvinyl chloride for different applications. Journal of Saudi Chemical Society, DOI: 10.1016/j.jscs.2011.03.015.

    Google Scholar 

  • Swayampakula, K., Boddu, V. M., Nadavala, S. K., and Abburi, K., 2009. Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. Journal of Hazardous Materials, 170: 680–689.

    Article  Google Scholar 

  • Tang, Q., Tang, X. W., Li, Z. Z., Chen, Y. M., Kou, N. Y., and Sun, Z. F., 2009. Adsorption and desorption behavior of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology and Biotechnology, 84: 1371–1380.

    Article  Google Scholar 

  • Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., and Çelik, A., 2012. Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution. Chemical Engineering Journal, 197: 379–386.

    Article  Google Scholar 

  • Varma, A. J., Deshpande, S. V., and Kennedy, J. F., 2004. Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55: 77–93.

    Article  Google Scholar 

  • Wan Ngah, W. S., and Isa, I. M., 1998. Comparison study of copper ion adsorption on chitosan dowex A-1 and zerolit 225. Journal of Applied Polymer Science, 67: 1067–1070.

    Article  Google Scholar 

  • Wan Ngah, W. S., Kamari, A., and Koay, Y. J., 2004. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34: 155–161.

    Article  Google Scholar 

  • Wan Ngah, W. S., Ariff, N. F. M., Hashim, A., and Hanafiah, M. A. K. M., 2010. Malachite Green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism. Clean-Soil, Air, Water, 38: 394–400.

    Article  Google Scholar 

  • Wan Ngah, W. S., Teonga, L. C., and Hanafiah, M. A. K. M., 2011. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83: 1446–1456.

    Article  Google Scholar 

  • Wang, J. S., Peng, R. T., Yang, J. H., Liu, Y. C., and Hu, X. J., 2011. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydrate Polymers, 84: 1169–1175.

    Article  Google Scholar 

  • Wang, L., and Wang, A., 2007. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. Journal of Hazardous Materials, 147: 979–985.

    Article  Google Scholar 

  • Wang, L., Xing, R. E., Liu, S., Yu, H. H., Qin, Y. K., Li, K. C., Feng, J. H., Li, R. F., and Li, P. C., 2010. Recovery of silver (I) using a thiourea-modified chitosan resin. Journal of Hazardous Materials, 180: 577–582.

    Article  Google Scholar 

  • Wang, X. H., Zheng, Y., and Wang, A. Q., 2009. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. Journal of Hazardous Materials, 168: 970–977.

    Article  Google Scholar 

  • Wei, J. M., Zhu, R. L., Zhu, J. X., Ge, F., Yuan, P., and He, H. P., 2009. Simultaneous sorption of crystal violet and 2-naphthol to bentonite with different CECs. Journal of Hazardous Materials, 166: 195–199.

    Article  Google Scholar 

  • Xiao, Y., and Zhou, X. H., 2008. Synthesis and properties of a novel crosslinked chitosan resin modified by L-lysine. Reactive & Functional Polymers, 68: 1281–1289.

    Article  Google Scholar 

  • Yu, C., and Mosbach, K., 2000. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers. Journal of Chromatography A, 888: 63–72.

    Article  Google Scholar 

  • Zhao, Z. L., Wang, X. Q., Zhao, C., Zhu, X. G., and Du, S. Y., 2010. Adsorption and desorption of antimony acetate on sodium montmorillonite. Journal of Colloid and Interface Science, 345: 154–159.

    Article  Google Scholar 

  • Zhou, L. M., Liu, J. H., and Liu, Z. R., 2009. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous Materials, 172: 439–446.

    Article  Google Scholar 

  • Zhou, L. M., Liu, Z. R., Liu, J. H., and Huang, Q. W., 2010a. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination, 258: 41–47.

    Article  Google Scholar 

  • Zhou, L. M., Xu, J. P., Liang, X. Z., and Liu, Z. R., 2010b. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous Materials, 182: 518–524.

    Article  Google Scholar 

  • Zhou, L. M., Jin, J. Y., Liu, Z. R., Liang, X. Z., and Shang, C., 2011. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 185: 1045–1052.

    Article  Google Scholar 

  • Zhou, Y. T., Nie, H. L., Branford-White, C., He, Z. Y., and Zhu, L. M., 2009. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Journal of Colloid and Interface Science, 330: 29–37.

    Article  Google Scholar 

  • Zhu, H. Y., Jiang, R., and Xiao, L., 2010. Adsorption of an anionic dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48: 522–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Wang, D., Yu, G. et al. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives — A review. J. Ocean Univ. China 12, 500–508 (2013). https://doi.org/10.1007/s11802-013-2113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-2113-0

Key words

Navigation