Skip to main content
Log in

Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The marine diatom Phaeodactylum tricornutum is a polymorphological, ecologically significant, and well-studied model of unicellular microalga. This diatom can accumulate diverse important metabolites. Herein, we cultured P. tricornutum in an internally installed tie-piece flat-plate photobioreactor under 14.5 m mol L−1 (high nitrogen, HN) and 2.9 m mol L−1 (low nitrogen, LN) of KNO3 and assessed its time-resolved changes in biochemical compositions. The results showed that HN was inductive to accumulate high biomass (4.1 g L−1). However, the LN condition could accelerate lipid accumulation in P. tricornutum. The maximum total lipid (TL) content under LN was up to 42.5% of biomass on day 12. Finally, neutral lipids (NLs) were 63.8% and 75.7% of TLs under HN and LN, respectively. The content of EPA ranged from 2.3% to 1.5% of dry weight during the growth period under the two culture conditions. Peak volumetric lipid productivity of 128.4 mg L−1d−1 was achieved in the HN group (on day 9). The highest volumetric productivity values of EPA, chrysolaminarin, and fucoxanthin were obtained in the exponential phase (on day 6) under HN, which were 9.6, 93.6, and 4.7 mg L−1d−1, respectively. In conclusion, extractable amounts of lipids, EPA, fucoxanthin, and chrysolaminarin could be obtained from P. tricornutum by regulating the culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, M. D., Cheng, C. H., Wan, H. M., and Lin, Y. H., 2011. Microalgal pigments potential as byproducts in lipid production. Journal of the Taiwan Institute of Chemical Engineers, 42 (5): 783–786.

    Article  Google Scholar 

  • Bertrand, M., 2010. Carotenoid biosynthesis in diatoms. Photosynthesis Research, 106 (1-2): 89–102.

    Article  Google Scholar 

  • Borowitzka, M. A., 2013. High-value products from microalgae ? their development and commercialization. Journal of Applied Phycology, 25 (3): 743–756.

    Article  Google Scholar 

  • Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P. G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., Van De Peer, Y., and Grigoriev, I. V., 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456 (7219): 239–244.

    Article  Google Scholar 

  • Brennan, L., and Owende, P., 2010. Biofuels from microalgae ? A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14 (2): 557–577.

    Article  Google Scholar 

  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., and Wijffels, R. H., 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124: 217–226.

    Article  Google Scholar 

  • Brussaard, C. P. D., Noordeloos, A. A. M., and Riegman, R., 1997. Autolysis kinetics of the marine diatom Ditylum brightellii (Bacillariophyceae) under nitrogen and phosporus limitation and starvation. Journal of Phycology, 33: 980–987.

    Article  Google Scholar 

  • Carreto, J. I., and Catoggio, J. A., 1976. Variations in pigment contents of the diatom Phaeodactylum tricornutum during growth. Marine Biology, 36 (2): 105–112.

    Article  Google Scholar 

  • Chauton, M. S., Reitan, K. I., Norsker, N. H., Tveterås, R., and Kleivdal, H. T., 2015. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture, 436: 95–103.

    Article  Google Scholar 

  • Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances, 25 (3): 294–306.

    Article  Google Scholar 

  • Cohen, Z., Norman, H. A., and Heimer, Y. M., 1993. Potential use of substituted pyridazinones for selecting polyunsaturated fatty acid overproduing cell lines of algae. Phytochemistry, 32: 259–264.

    Article  Google Scholar 

  • Dubios, M., Gillies, K. A., Hamilton, J. K., Rebers, P. A. T., and Smith, F., 1956. Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28: 350–356.

    Article  Google Scholar 

  • Gao, B., Yang, J., Lei, X., Xia, S., Li, A., and Zhang, C., 2016. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. Journal of Applied Phycology, 28 (2): 821–830.

    Article  Google Scholar 

  • Gong, Y., Guo, X., Wan, X., Liang, Z., and Jiang, M., 2013. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. Journal of Basic Microbiology, 53 (1): 29–36.

    Article  Google Scholar 

  • Granum, E., and Myklestad, S. M., 2001. Mobilization of ß-1, 3-glucan and biosynthesis of amino acids induced by NH4+ addition to N-limited cells of the marine diatom Skeletonema costatum (Bacillariophyceae). Journal of Phycology, 37 (5): 772–782.

    Article  Google Scholar 

  • Granum, E., and Myklestad, S. M., 2002. A simple combined method for determination of ß-1, 3-glucan and cell wall polysaccharides in diatoms. Hydrobiologia, 477: 155–161.

    Article  Google Scholar 

  • Griffiths, M. J., and Harrison, S. T. L., 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 276: 23–25.

    Google Scholar 

  • Grima, E. M., Pé rez, J. A. S., Camacho, F. G., Sá nchez, J. G., and Alonso, D. L., 1993. n-3 PUFA productivity in chemostat cultures of microalgae. Applied Microbiology and Biotechnology, 38 (5): 599–605.

    Google Scholar 

  • Guedes, A. C., Meireles, L. A., Amaro, H. M., and Malcata, F. X., 2010. Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. Journal of the American Oil Chemists Society, 87 (7): 791–801.

    Article  Google Scholar 

  • Guschina, I. A., and Harwood, J. L., 2009. Algal lipids and effect of the environment on their biochemistry. In: Lipids in Aquatic Ecosystems. Arts, M. T., et al., eds., Springer, New York, 1–25.

    Google Scholar 

  • Harisko, I., and Posten, C., 2014. Biorefinery of microalgaeopportunities and constraints for different production scenarios. Biotechnology, 9: 739–752.

    Google Scholar 

  • Hayward, J., 1968. Studies on the growth of Phaeodactylum tricornutum IV.Comparison of different isolates. Journal of the Marine Biological Association of the United Kingdom, 48 (03): 657–666.

    Article  Google Scholar 

  • Hodgson, P. A., Henderson, R. J., Sargent, J. R., and Leftley, J. W., 1991. Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. Journal of Applied Phycology, 3 (2): 169–181.

    Article  Google Scholar 

  • Ibañez, E., Herrero, M., Mendiola, J. A., and Castro-Puyana, M., 2012. Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. In: Marine Bioactive Compounds. Hayes, M., ed., Springer, New York, 55–98.

    Chapter  Google Scholar 

  • Khozin-Goldberg, I., Iskandarov, U., and Cohen, Z., 2011. LCPUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91 (4): 905–915.

    Article  Google Scholar 

  • Khozin-Goldberg, I., Shrestha, P., and Cohen, Z., 2005. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incise. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1738 (1): 63–71.

    Google Scholar 

  • Kim, J. C., 2014. Solvent extraction of fucoxanthin from Phaeodactylum tricornutum. Separation Science and Technology, 49: 410–415.

    Article  Google Scholar 

  • Kim, S. M., Jung, Y. J., Kwon, O. N., Cha, K. H., Um, B. Y., Chung, D., and Pan, C. H., 2012. A potential commercial source of fucoxanthin extracted from the microalga Phaedactylum tricornutum. Applied Biochemistry and Biotechnology, 166: 1843–1855.

    Article  Google Scholar 

  • Kusaikin, M. I., Ermakova, S. P., Shevchenko, N. M., Isakov, V. V., Gorshkov, A. G., Vereshchagin, A. L., Grachev, M. A., and Zvyagintseva, T. N., 2010. Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chemistry of Natural Compounds, 46 (1): 1–4.

    Article  Google Scholar 

  • Larson, T. R., and Rees, T. A. V., 1996. Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology, 32 (3): 388–393.

    Article  Google Scholar 

  • Lebeau, T., and Robert, J. M., 2003. Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Applied Microbiology and Biotechnology, 60 (6): 612–623.

    Google Scholar 

  • Liang, Y., Beardall, J., and Heraud, P., 2006. Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Botanica Marina, 49 (2): 165–173.

    Article  Google Scholar 

  • Mann, J. E., and Myers, J., 1968. On pigments, growth, and photosynthesis of Phaeodactylum tricornutum. Journal of Phycology, 4 (4): 349–355.

    Article  Google Scholar 

  • Medina, A. R., Grima, E. M., Giménez, A. G., and González, M. I., 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 16 (3): 517–580.

    Article  Google Scholar 

  • Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34 (1): 1–5.

    Article  Google Scholar 

  • Molina, G. E., Belarbi, E. H., Acién, F. F. G., Medina, A. R., and Chisti, Y., 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20 (7): 491–515.

    Article  Google Scholar 

  • Muramatsu, D., Iwai, A., Aoki, S., Uchiyama, H., Kawata, K., Nakayama, Y., Nikawa, Y., Kusano, K., Okabe, M., and Miyazaki, T., 2012. ß-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PloS One, 7 (7): e41399.

    Article  Google Scholar 

  • Nagao, K., and Yanagita, T., 2005. Conjugated fatty acids in food and their health benefits. Journal of Bioscience and Bioengineering, 100 (2): 152–157.

    Article  Google Scholar 

  • Peng, J., Yuan, J. P., Wu, C. F., and Wang, J. H., 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9 (10): 1806–1828.

    Article  Google Scholar 

  • Prommuak, C., Pavasant, P., Quitain, A. T., Goto, M., and Shotipruk, A., 2013. Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chemical Engineering & Technology, 36 (5): 733–739.

    Article  Google Scholar 

  • Reis, A., Gouveia, L., Veloso, V., Fernandes, H. L., Empis, J., and Novais, J. M., 1996. Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor. Bioresource Technology, 55 (1): 83–88.

    Article  Google Scholar 

  • Silva, B. A. M., Torzillo, G., Kopecký, J., and Masojídek, J., 2013. Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass and Bioenergy, 54: 115–122.

    Article  Google Scholar 

  • Størseth, T. R., Kirkvold, S., Skjermo, J., and Reitan, K. I., 2006. A branched β-d-(1→3, 1→6)-glucan from the marine diatom Chaetoceros debilis (Bacillariophyceae) characterized by NMR. Carbohydrate Research, 341 (12): 2108–2114.

    Article  Google Scholar 

  • Tonon, T., Harvey, D., Larson, T. R., and Graham, I. A., 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry, 61 (1): 15–24.

    Article  Google Scholar 

  • Ugwu, C. U., Aoyagi, H., and Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology, 99 (10): 4021–4028.

    Article  Google Scholar 

  • Wen, Z. Y., and Chen, F., 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21 (4): 273–294.

    Article  Google Scholar 

  • Widjaja, A., Chien, C., and Ju, Y., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40 (1): 13–20.

    Article  Google Scholar 

  • Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z., and Zhang, C., 2014. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs, 12 (9): 4883–4897.

    Article  Google Scholar 

  • Xia, S., Wan, L., Li, A., Sang, M., and Zhang, C., 2013a. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chinese Journal of Oceanology and Limnology, 31: 1163–1173.

    Article  Google Scholar 

  • Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., and Zhang, C., 2013b. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11 (7): 2667–2681.

    Article  Google Scholar 

  • Yang, X., Wang, R., Zhang, S., Zhu, W., Tang, J., Liu, J., Chen, P., Zhang, D., Ye, W., and Zheng, Y., 2014. Polysaccharides from Panax japonicus CA Meyer and their antioxidant activities. Carbohydrate Polymers, 101: 386–391.

    Article  Google Scholar 

  • Yongmanitchai, W., and Ward, O. P., 1991. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and Environmental Microbiology, 57 (2): 419–425.

    Google Scholar 

  • Zhang, C., Zmora, O., Kopel, R., and Richmond, A., 2001. An industrial-size flat plate glass reactor for mass production of Nannochloropsi sp. (Eustigmatophyceae). Aquaculture, 195 (1): 35–49.

    Google Scholar 

  • Zhang, Z., Wang, X., Mo, X., and Qi, H., 2013. Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydrate Polymers, 92 (2): 2084–2087.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the following fundings: the Natural Science Foundation of China (No. 31170337); the National High Technology Research and Development Program of China (863 Program) (No. 2013AA 065805); the National Basic Research Program of China (973 Program) (No. 2011CB2009001); the Special Program for Low-Carbon, Reform and Development Commission of Guangdong Province (No. 2011-051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Chen, A., Zhang, W. et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean Univ. China 16, 916–924 (2017). https://doi.org/10.1007/s11802-017-3174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3174-2

Key words

Navigation