Skip to main content
Log in

Photocatalytic production of oxygen in a dual bed system using a reversible redox mediator on Ir-TiO2 catalyst

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Photocatalytic O2 evolution by water splitting in an alkaline solution with a redox mediator was investigated in a dual bed system configuration: one bed was used for oxygen evolution and the other for hydrogen evolution. The employed photocatalyst was Ir-TiO2 and the iodate ion, KIO3, was used as a redox mediator. In order to find the optimum conditions for oxygen evolution, the effect of alkaline concentration, KIO3 concentration and the amount of Ir loading on the photocatalytic reactivity was examined in an irradiation area of 0.055 m2 reactor with a 400 W U.V. lamp. The experimentally obtained results showed that oxygen evolution depends on the concentration of the alkaline solution, the potassium iodate concentration and the amount of Ir loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. S. Sato, J. Photochem. Photobiol. A: Chem., 45, 361 (1988).

    Article  CAS  Google Scholar 

  3. Y. C. Liu, G. L. Griffin, S. S. Chan and I. E. Wachs, J. Catal, 94, 108 (1985).

    Article  CAS  Google Scholar 

  4. A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aida and T. Onishi, J. Catal, 111, 67 (1988).

    Article  CAS  Google Scholar 

  5. P. Reyes, H. Rojas and J. L. G. Fierro, Appl. Catal A, 248, 59 (2003).

    Article  CAS  Google Scholar 

  6. R. Abe, K. Sayama and H. Arakawa, Chem. Phys. Lett., 371(3), 360 (2003).

    Article  CAS  Google Scholar 

  7. S. Teratani, J. Nakamichi, K. Taya and K. Tanaka, Bull. Chem. Soc. Jap., 55(6), 1688 (1982).

    Article  CAS  Google Scholar 

  8. C.A. Linkous, D.K. Slattery, A. J.A. Ouelette, G. T. Mckaige and B. C. N. Austin, Int J hydrogen energy, Progress XI, proceedings of the 11 th World Hydrogen Energy Conf, 3, 2545 (1996).

    CAS  Google Scholar 

  9. K. Lee, W. Nam and G.Y. Han, Int. J. Hydrogen Energy, 29, 1343 (2004).

    Article  CAS  Google Scholar 

  10. R. Abe, K. Sayama, K. Domen and H. Arakawa, Chem. Phys. Lett., 344(3), 339 (2001).

    Article  CAS  Google Scholar 

  11. G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, J. Photochem. Photobiol. A: Chem., 89, 177 (1995).

    Article  CAS  Google Scholar 

  12. R. Abe, K. Hara, K. Sayama, K. Domen and H. Arakawa, J. Photochem. Photobiol. A: Chem., 137(1), 63 (2000).

    Article  CAS  Google Scholar 

  13. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, J. Photochem. Photobiol. A: Chem., 148(1), 71 (2002).

    Article  CAS  Google Scholar 

  14. H. Vaidyanathan, K. Robbins and G. M. Rao, J. Power. Sources, 63(1), 7 (1996).

    Article  CAS  Google Scholar 

  15. K. Karakitsou and X. E. Verykios, J. Catal, 152(2), 360 (1995).

    Article  CAS  Google Scholar 

  16. T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, Int. J. Hydrogen Energy, 27, 991 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Young Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, W.S., Kim, E.Y. & Han, G.Y. Photocatalytic production of oxygen in a dual bed system using a reversible redox mediator on Ir-TiO2 catalyst. Korean J. Chem. Eng. 25, 1355–1357 (2008). https://doi.org/10.1007/s11814-008-0222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0222-z

Key words

Navigation