Skip to main content
Log in

CFD simulation of coal-water slurry flowing in horizontal pipelines

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An Eulerian multiphase approach based on kinetic theory of granular flow was used to simulate flow of coal-water slurries (CWS) in horizontal pipelines. The RNG k-ɛ turbulent model was incorporated in the governing equation to model turbulent two-phase flow with strong particle-particle interactions. In this model, the coal particles with bimodal distribution were considered as two solid-phase components, and the moment exchange between solid and liquid as well as that between solid and solid were accounted for. The model was firstly validated with pressure gradient and concentration profile data from the open literature, and then validated with pressure gradient data of the authors’ experiments. The effects of influx velocity, total influx concentration and grain composition were numerically investigated, and the results have displayed some important slurry flow characteristics, such as constituent particle concentration distribution and velocity distribution as well as pressure gradients, which are very difficult to display in the experiments. The results suggest that both gravity difference between large and small particles and strong particle-particle interaction had significant effects on concentration distribution as well as velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Choi, T. J. Park, J.H. Kim, J.G. Lee, J. C. Hong and Y.G. Kim, Korean J. Chem. Eng., 18, 493 (2001).

    Article  CAS  Google Scholar 

  2. S. K. Lahiri and K. C. Ghanta, The 17th international conference on the hydraulic transport of solids, Cape town, Southern African, 149 (2007).

  3. N. Z. Beata and Z. Wojciech, International Journal of Refrigeration, 29, 429 (2006).

    Article  CAS  Google Scholar 

  4. F. L. Hsu, Ph.D. thesis, AAI8726087, University of Illinois at Chicago, Chicago, IL (1987).

  5. M. H. Assar, Ph.D. thesis, AAI9720393, Case Western Reserve University, OH (1996).

  6. J. Ling, P.V. Skudarnov, C. X. Lin and M. A. Ebadian, International Journal of Heat and Fluid Flow, 24, 389 (2003).

    Article  CAS  Google Scholar 

  7. C. X. Lin and M. A. Ebadian, Computers & Fluids, 37, 965 (2008).

    Article  Google Scholar 

  8. J. Xu, A. Rouelle, K. M. Smith, D. Celik, M.Y. Hussaini and S.W. Van Sciver, Cryogenics, 44, 459 (2004).

    Article  CAS  Google Scholar 

  9. T. C. Jack, T. Fariborz, E. Renaud, E. Naoko and R.G. John, Chemical Engineering Science, 62, 6334 (2007).

    Article  CAS  Google Scholar 

  10. L. Paola, D. F. Renzo, P. Roberta and O. Olumuyiwa, Powder Technology, 167, 94 (2006).

    Article  CAS  Google Scholar 

  11. R. Panneerselvam, S. Savithri and G. D. Surender, Chemical Engineering Journal, 132, 159 (2007).

    Article  CAS  Google Scholar 

  12. S. Roy and M. P. Dudukovic, Industrial and Engineering Chemistry Research, 40, 5440 (2001).

    Article  CAS  Google Scholar 

  13. Y. Cheng and J. Zhu, Canadian Journal of Chemical Engineering, 83, 177 (2005).

    Article  CAS  Google Scholar 

  14. Y. B. Liu, J. Z. Chen and Y. R. Yang, Journal of Zhejiang University (Engineering Science), 40 (2006).

  15. O. Shinichi, S. David and O. Kohei, Chemical Engineering Science, 61, 3714 (2006).

    Article  CAS  Google Scholar 

  16. D. R. Kaushal, S. Kimihiko, T. Takeshi, F. Katsuya and T. Yuji, International Journal of Multiphase Flow, 31, 809 (2005).

    Article  CAS  Google Scholar 

  17. P.V. Skudarnov, C. X. Lin and M. A. Ebadian, Journal of Fluids Engineering, 126, 125 (2004).

    Article  CAS  Google Scholar 

  18. D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press, New York (1994).

    Google Scholar 

  19. Y. R. He, H. S. Chen, Y. L. Ding and B. Lickiss, Chemical Engineering Research and Design, 85, 963 (2007).

    Article  CAS  Google Scholar 

  20. J. T. Jenkins and S. B. Savage, J. Fluid Mech., 130, 187 (1983).

    Article  Google Scholar 

  21. J. Ding and D. Gidaspow, AIChE J., 36, 523 (1990).

    Article  CAS  Google Scholar 

  22. C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Journal of Fluid Mechanics, 140, 223 (1984).

    Article  Google Scholar 

  23. S. Ogawa, A. Umemura and N. Oshima, Z. Angew. Math. Phys., 31, 483 (1980).

    Article  Google Scholar 

  24. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  25. J. Yang and R. J. Chalaturnyk, 3rd international conference on computational methods in multiphase flow, Xi’an (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Duan, Y., Pu, W. et al. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean J. Chem. Eng. 26, 1144–1154 (2009). https://doi.org/10.1007/s11814-009-0190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0190-y

Key words

Navigation