Skip to main content

Advertisement

Log in

Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the absorption ability of potassium salts of amino acid solutions for carbon dioxide and compared the results with MEA. The corrosion and degradation behavior were investigated in a CO2 absorption process using aqueous potassium salts of glycine and taurine. The experimental parameters varied were the concentration, amino acid type, temperature, CO2 loading, piperazine, and the presence of corrosion inhibitors. The corrosion characteristics of carbon steel were measured with potassium glycinate and potassium taurate solutions over a wide range of concentrations (1.5 to 5.0 M) and temperatures (313.15 to 353.15 K). The corrosion rate was calculated using a weight loss method averaging the results of four specimens. The experimental results indicate that increases in the concentration of the aqueous amino acid salts, solution temperature, CO2 loading, and piperazine concentration accelerate the corrosion rate. In addition, corrosion inhibitors were proven to be effective in controlling corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F.D. Magalhaes and A. Mendes, Chem. Eng. Sci., 62(23), 6534 (2007).

    Article  CAS  Google Scholar 

  2. S. Lee, J.W. Park, H. J. Song, S. Maken and T. Filburn, Energy Policy, 36(1), 326 (2008).

    Article  Google Scholar 

  3. S. Lee, H. J. Song, S. Maken, H. C. Shin, H. C. Song and J.W. Park, J. Chem. Eng. Data, 51(2), 504 (2006).

    Article  CAS  Google Scholar 

  4. S. Lee, S. Choi, S. Maken, H. J. Song, H. C. Shin and J.W. Park, J. Chem. Eng. Data, 50(5), 1773 (2005).

    Article  CAS  Google Scholar 

  5. P. S. Kumar, J.A. Hogendoorn, G. F. Versteeg and P.H. M. Feron, AIChE J., 49(1), 203 (2003).

    Article  CAS  Google Scholar 

  6. H. J. Song, S. Lee, S. Maken, J. J. Park and J.W. Park, Fluid Phase Equilibria, 246(1–2), 1 (2006).

    Article  CAS  Google Scholar 

  7. S. Lee, H. J. Song, S. Maken, S.K. Yoo and J.W. Park, Korean J. Chem. Eng., 25(1), 1 (2008).

    Article  Google Scholar 

  8. J. Van Holst, S. R. A. Kersten and K. J.A. Hogendoorn, J. Chem. Eng. Data, 53(6), 1286 (2008).

    Article  Google Scholar 

  9. J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen and X. Lv, Chemistry — A European Journal, 12(15), 4021 (2006).

    Article  CAS  Google Scholar 

  10. P. S. Kumar, J.A. Hogendoorn, P.H. M. Feron and G. F. Versteeg, Ind. Eng. Chem. Res., 42(12), 2832 (2003).

    Article  CAS  Google Scholar 

  11. P. S. Kumar, J.A. Hogendeeorn, S. J. Timmer, P.H. M. Feron and G. F. Versteeg, Ind. Eng. Chem. Res., 42(12), 2841 (2003).

    Article  CAS  Google Scholar 

  12. M. S. DuPart, T. R. Bacon and D. J. Edwards, Hydrocarbon Processing, 72(5), 89 (1993).

    CAS  Google Scholar 

  13. E.N. Hawkes and B. F. Mago, Hydrocarbon Processing, 50(8), 109 (1971).

    Google Scholar 

  14. S. Lee, S. Maken, J.W. Park, H. J. Song, J. J. Park, J.G. Shim, J. H. Kim and H. M. Eum, Fuel, 87(8–9), 1734 (2008).

    Article  CAS  Google Scholar 

  15. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38(1), 310 (1999).

    Article  CAS  Google Scholar 

  16. S. Ma’mun, H. F. Svendsen, K.A. Hoff and O. Juliussen, Energy Conver. Manage., 48(1), 251 (2007).

    Article  Google Scholar 

  17. I. R. Soosaiprakasam and A. Veawab, International J. Greenhouse Gas Control, 2(4), 553 (2008).

    Article  CAS  Google Scholar 

  18. Chemical Compositions of SAE Carbon Steels, http://www.kspipe.com/datacenter-6.htm.

  19. M. S. DuPart, T. R. Bacon and D. J. Edwards, Hydrocarbon Processing, 72(4), 75 (1993).

    CAS  Google Scholar 

  20. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 38(10), 3917 (1999).

    Article  CAS  Google Scholar 

  21. A. Veawab, P. Tontiwachwuthikul and S. D. Bhole, Chem. Eng. Commun., 144, 65 (1996).

    Article  CAS  Google Scholar 

  22. A. Veawab, P. Tontiwachwuthikul and S. D. Bhole, Ind. Eng. Chem. Res., 36(1), 264 (1997).

    Article  CAS  Google Scholar 

  23. D.M. Austgen, G. T. Rochelle, P. Xiao and C. C. Chen, Ind. Eng. Chem. Res., 28(7), 1060 (1989).

    Article  CAS  Google Scholar 

  24. S. Lee, H. J. Song, S. Maken and J.W. Park, Ind. Eng. Chem. Res., 46(5), 1578 (2007).

    Article  CAS  Google Scholar 

  25. M. Nainar and A. Veawab, Energy Procedia, 1(1), 231 (2009).

    Article  CAS  Google Scholar 

  26. J. T. Cullinane and G. R. Rochelle, Chem. Eng. Sci., 59(17), 3619 (2004).

    Article  CAS  Google Scholar 

  27. L. Rob, The promoter effect of piperazine on the removal of carbon dioxide, 7th January (2004).

  28. J. Oexmann, C. Hensel and A. Kather, International J. Greenhouse Gas Control, 2(4), 539 (2008).

    Article  CAS  Google Scholar 

  29. A. Veawab, P. Tontiwachwuthikul and A. Chakma, Ind. Eng. Chem. Res., 40(22), 4771 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S., Song, HJ., Park, JW. et al. Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2 . Korean J. Chem. Eng. 27, 1576–1580 (2010). https://doi.org/10.1007/s11814-010-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0246-z

Key words

Navigation