Skip to main content
Log in

A highly efficient catalyst for direct synthesis of methyl acrylate via methoxycarbonylation of acetylene

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A non-petroleum approach for the catalytic synthesis of methyl acrylate via methoxycarbonylation of acetylene with carbon monoxide and methanol as nucleophilic reagent has been studied under various conditions. Pd(OAc)2/2-PyPPh2/p-tsa was found to be a highly efficient catalytic system. The types of phosphorus ligands and their concentration was a determinative factor for catalytic activity. Mono-dentate phosphorus ligand such as triphenylphosphine has no activity while 2-(diphenylphosphino)pyridine with a mixed N-P bidentate structure has an excellent activity. Catalytic performance of acids depends on their acidic strength and coordinative property. Among all acidic promoters, p-toluenesulfonic acid displayed an excellent performance. Other parameters such as solvent polarity and initial pressure of carbon monoxide have also important influences on the hydroesterification of acetylene. It is beneficial for the reaction that the solvents have a high polarity. At low pressure of carbon monoxide, to high active palladium catalyst, the reaction easily proceeded. However, at high pressure of carbon monoxide, acetylene will transfer from solution to gas phase, resulting in lower conversion of acetylene. In addition, due to steric hindrance of alcohols, methanol has a highest activity in hydroesterification of acetylene in low carbon alcohols. Under the optimal reaction conditions, 99.5% of acetylene conversion and 99.7% of selectivity toward methyl acrylate as well as 2,502 h−1 TOF were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Strohlein, Y. Assuncao, N. Dube, A. Bardow, M. Mazzotti and M. Morbidelli, Chem. Eng. Sci., 61, 5296 (2006).

    Article  Google Scholar 

  2. A. Brennfuhrer, H. Neumann and M. Beller, Chemcatchem, 1, 28 (2009).

    Article  Google Scholar 

  3. S. Doherty, J. G. Knight and M. Betham, Chem. Commun., 88 (2006).

  4. T. Takahashi, C. J. Xi, Y. Ura and K. Nakajima, J. Am. Chem. Soc., 122, 3228 (2000).

    Article  CAS  Google Scholar 

  5. S. Jayasree, A. Seayad, S. P. Gupte and R.V. Chaudhari, Catal. Lett., 58, 213 (1999).

    Article  CAS  Google Scholar 

  6. G. Kiss, Chem. Rev., 101, 3435 (2001).

    Article  CAS  Google Scholar 

  7. S. Kunichika, Y. Sakakibara and T. Nakamura, B. Chem. Soc. Jpn., 41, 390 (1968).

    Article  CAS  Google Scholar 

  8. Y. Sakakibara, B. Chem. Soc. Jpn., 37, 1601 (1964).

    Article  CAS  Google Scholar 

  9. S. K. Bhattacharyya and A. K. Sen, Ind. Eng. Chem. Process Des. Dev., 3, 169 (1964).

    Article  CAS  Google Scholar 

  10. S. K. Bhattach and D. P. Bhattach, J. Appl. Chem., 16, 202 (1966).

    Article  Google Scholar 

  11. S.K. Bhattacharyya and A. K. Sen, J. Appl. Chem., 13, 498 (1963).

    Article  CAS  Google Scholar 

  12. Y. Z. An, J.M. Qiu, D. H. Yang, D. H. He and Z. S. Wang, Nat. Gas. Chem. Ind., 16 (1991).

  13. X.G. Yang, J. Q. Zhang and Z. T. Liu, Appl. Catal. A-Gen., 173, 11 (1998).

    Article  CAS  Google Scholar 

  14. C.M. Tang, Y. Zeng, P. Cao, X.G. Yang and G.Y. Wang, Catal. Lett., 129, 189 (2009).

    Article  CAS  Google Scholar 

  15. S. B. Atla, A. A. Kelkar and R. V. Chaudhari, J. Mol. Catal. AChem., 307, 134 (2009).

    Article  CAS  Google Scholar 

  16. J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 130, 15254 (2008).

    Article  CAS  Google Scholar 

  17. B. K. Munoz, C. Godard, A. Marinetti, A. Ruiz, J. Benet-Buchholz and C. Claver, Dalton T., 5524 (2007).

  18. G. Keglevich, T. Kegl, I. L. Odinets, N.M. Vinogradova and L. Kollar, CR. Chem., 7, 779 (2004).

    Article  CAS  Google Scholar 

  19. J. Girones, J. Duran, A. Polo and J. Real, J. Mol. Catal. A-Chem., 198, 77 (2003).

    Article  CAS  Google Scholar 

  20. F. De Angelis, A. Sgamellotti and N. Re, Organometallics, 19, 4104 (2000).

    Article  Google Scholar 

  21. A. Seayad, A.A. Kelkar, R.V. Chaudhari and L. Toniolo, Ind. Eng. Chem. Res., 37, 2180 (1998).

    Article  CAS  Google Scholar 

  22. K. Nozaki, M. L. Kantam, T. Horiuchi and H. Takaya, J. Mol. Catal. A-Chem., 118, 247 (1997).

    Article  Google Scholar 

  23. Y. Kushino, K. Itoh, M. Miura and M. Nomura, J. Mol. Catal., 89, 151 (1994).

    Article  CAS  Google Scholar 

  24. D. Zargarian and H. Alper, Organometallics, 12, 712 (1993).

    Article  CAS  Google Scholar 

  25. K. Itoh, M. Miura and M. Nomura, Tetrahedron Lett., 33, 5369 (1992).

    Article  CAS  Google Scholar 

  26. E. Drent, P. Arnoldy and P. H.M. Budzelaar, J. Organomet. Chem., 475, 57 (1994).

    Article  CAS  Google Scholar 

  27. E. Drent, P. Arnoldy and P. H.M. Budzelaar, J. Organomet. Chem., 455, 247 (1993).

    Article  CAS  Google Scholar 

  28. C. M. Tang, Y. Zeng, X.G. Yang, Y. C. Lei and G.Y. Wang, J. Mol. Catal. A-Chem., 314, 15 (2009).

    Article  CAS  Google Scholar 

  29. K. J. Knifton, US 3904672 (1975).

  30. A. Seayad, A. A. Kelkar, L. Toniolo and R.V. Chaudhari, J. Mol. Catal. A-Chem., 151, 47 (2000).

    Article  CAS  Google Scholar 

  31. J. Liu, C. Jacob, K. J. Sheridan, F. Al-Mosule, B. T. Heaton, J. A. Iggo, M. Matthews, J. Pelletier, R. Whyman, J. F. Bickley and A. Steiner, Dalton T., 39, 7921 (2010).

    Article  CAS  Google Scholar 

  32. L. Yan, Y. J. Ding, H. J. Zhu, J. M. Xiong, T. Wang, Z. D. Pan and L.W. Lin, J. Mol. Catal. A-Chem., 234, 1 (2005).

    Article  CAS  Google Scholar 

  33. H. J. Zhu, Y. J. Ding, L. Yan, D. P. He, T. Wang, W. M. Chen, Y. Lv and L.W. Lin, Chinese J. Catal., 25, 653 (2004).

    CAS  Google Scholar 

  34. C. Larpent and H. Patin, Tetrahedron, 44, 6107 (1988).

    Article  CAS  Google Scholar 

  35. B. R. Sarkar and R.V. Chaudhari, Catal. Surv. Asia, 9, 193 (2005).

    Article  CAS  Google Scholar 

  36. A. Scrivanti, V. Beghetto, M. Zanato and U. Matteoli, J. Mol. Catal. A-Chem., 160, 331 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Ming Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, CM., Li, XL. & Wang, GY. A highly efficient catalyst for direct synthesis of methyl acrylate via methoxycarbonylation of acetylene. Korean J. Chem. Eng. 29, 1700–1707 (2012). https://doi.org/10.1007/s11814-012-0073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0073-5

Key words

Navigation