Skip to main content
Log in

Factorial design in optimization of the separation of uranium from yellowcake across a hollow fiber supported liquid membrane, with mass transport modeling

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction and stripping of uranium(VI) from other impurity elements in yellowcake was performed simultaneously in one stage by a hollow fiber supported liquid membrane. Uranium ions were selectively extracted from yellowcake using TBP as the extractant, while thorium and some rare earth elements were rejected in the raffinate. The optimization method was carried out using 32 factorial design. The concentration of nitric acid in the feed solution and the concentration of TBP in the liquid membrane were regarded as factors in the optimization. A mass transport model focusing on the boundary layer of the extraction side was also applied. The model can predict the concentration of uranium in the feed tank at different times. The validity of the developed model was statistically evaluated through a comparison with experimental data, and good agreement was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Chapman & Hall, New York (2000).

    Google Scholar 

  2. G. D. Clayton and F. E. Clayton, Patty’s industrial hygiene and toxicology, 4th Ed., Wiley-Interscience, New York (1994).

    Google Scholar 

  3. R. C. Merritt, The extractive metallurgy of uranium, Colorado School of Mines Research Institute, Golden CO (1971).

    Google Scholar 

  4. C. K. Gupta and N. Krishnamurthy, Int. Mater. Rev., 5, 204 (1994).

    Google Scholar 

  5. F. Habashi, Handbook of extractive hydrometallurgy, Vol. III., Wiley, New York (1997).

    Google Scholar 

  6. M. Eskandari Nasab, A. Sam and S. Alamdar Milani, Hydrometallurgy, 106, 141 (2011).

    Article  CAS  Google Scholar 

  7. M. Eskandari Nasab, A. Sam and S. Alamdar Milani, J. Radioanal. Nucl. Chem., 287, 239 (2011).

    Article  CAS  Google Scholar 

  8. K. C. Hughes and R. Singh, Hydrometallurgy, 6, 25 (1980).

    Article  CAS  Google Scholar 

  9. J.C. B. S. Amaral and C. A. Morais, Miner. Eng., 23, 498 (2010).

    Article  CAS  Google Scholar 

  10. T. Sato, J. Appl. Chem., 15, 489 (1965).

    Article  CAS  Google Scholar 

  11. J. Marchese and M. Campderrós, Desalination, 164, 141 (2004).

    Article  CAS  Google Scholar 

  12. R. Klaassen, P.H. M. Feron and A.E. Jansen, Chem. Eng. Res. Des., 83, 234 (2005).

    Article  CAS  Google Scholar 

  13. A. Gabelman and S. T. Hwang, J. Membr. Sci., 159, 61 (1999).

    Article  CAS  Google Scholar 

  14. C. S. Kedari, S. S. Pandit and P.M. Gandhi, J. Membr. Sci., 430, 188 (2013).

    Article  CAS  Google Scholar 

  15. M. S. Manna, K. K. Bhatluri, P. Saha and A. K. Ghoshal, J. Membr. Sci., 447, 325 (2013).

    Article  CAS  Google Scholar 

  16. G. Schultz, Desalination, 68, 191 (1988).

    Article  Google Scholar 

  17. V. S. Kislik (Ed.), Liquid membranes: principles & applications in chemical separations & wastewater treatment, Elsevier, Oxford UK, 401 (2010).

    Book  Google Scholar 

  18. W. S.W. Ho and K. K. Sirkar, Membrane handbook, Chapman & Hall, New York (1992).

    Book  Google Scholar 

  19. N. Leepipatpiboon, U. Pancharoen and P. Ramakul, Korean J. Chem. Eng., 30, 194 (2013).

    Article  CAS  Google Scholar 

  20. D. Buachuang, P. Ramakul, N. Leepipatpiboon and U. Pancharoen, J. Alloys Comp., 509, 9549 (2011).

    Article  CAS  Google Scholar 

  21. P. Ramakul, T. Supajaroon, T. Prapasawat, U. Pancharoen and A.W. Lothongkum, J. Ind. Eng. Chem., 15, 224 (2009).

    Article  CAS  Google Scholar 

  22. P. Ramakul, N. Leepipatpiboon, C. Yamoum, U. Thubsuang, S. Bunnak and U. Pancharoen, Korean J. Chem. Eng., 26, 765 (2009).

    Article  CAS  Google Scholar 

  23. N. Sunsandee, U. Pancharoen, P. Rashatasakhon, P. Ramakul and N. Leepipatpiboon, Sep. Sci. Technol., 48, 2363 (2013).

    Article  CAS  Google Scholar 

  24. N. Sunsandee, N. Leepipatpiboon and P. Ramakul, Korean J. Chem. Eng., 30, 1312 (2013).

    Article  CAS  Google Scholar 

  25. G. S. Peace, Taguchi methods: a hands-on approach, Addison-Wesley, Reading MA (1993).

    Google Scholar 

  26. J. Guervenou, P. Giamarchi, C. Coulouarn, M. Guerda, C. Le Lez and T. Oboyet, Chemom. Intell. Lab. Syst., 63, 81 (2002).

    Article  CAS  Google Scholar 

  27. J. C.G. E. da Silva, J. R.M. Dias and J. M. C. S. Magalhães, Anal. Chim. Acta, 450, 175 (2001).

    Article  Google Scholar 

  28. B. Medjahed, M. A. Didi and D. Villemin, Desalin. Water Treat., In Press (2013).

    Google Scholar 

  29. D. Kavak, M. Demir, B. Bassayel and A. S. Anagün, Desalin. Water Treat., 51, 1712 (2013).

    Article  CAS  Google Scholar 

  30. U. Pancharoen, P. Ramakul, W. Patthaveekongka and M. Hronec, J. Ind. Eng. Chem., 12, 673 (2006).

    Google Scholar 

  31. P. N. Pathak, R. Veeraraghavan, D. R. Prabhu, G. R. Mahajan and V. K. Manchanda, Sep. Sci. Technol., 34, 2601 (1999).

    Article  CAS  Google Scholar 

  32. J. Stas, A. Dahdouh and H. Shlewit, Periodica Polytechnica: Chem. Eng., 49, 3 (2005).

    CAS  Google Scholar 

  33. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd Ed., John Wiley & Sons, New York (2007).

    Google Scholar 

  34. D. De Soete, R. Gijbels and J. Hoste, Neutron activation analysis, John Wiley & Sons, New York (1972).

    Google Scholar 

  35. W. D. Ehmann and D. E. Vance, Radiochemistry and nuclear methods of analysis, John Wiley & Sons, New York (1991).

    Google Scholar 

  36. Q. Yang and N.M. Kocherginsky, J. Membr. Sci., 297, 121 (2007).

    Article  CAS  Google Scholar 

  37. R. A. Robinson and R. H. Stokes, Electrolyte solutions, Butterworth, London (1965).

    Google Scholar 

  38. E. Mauerhofer, K. Zhernosekov and F. Rösch, Radiochim. Acta, 91, 473 (2003).

    Article  CAS  Google Scholar 

  39. N. O’Rourke, L. Hatcher and E. J. Stepanksi, A step-by-step approach to using SAS for univariate & multivariate statistics, 2nd Ed., SAS Institute, Cary NC (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakorn Ramakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leepipatpaiboon, N., Pancharoen, U., Sunsandee, N. et al. Factorial design in optimization of the separation of uranium from yellowcake across a hollow fiber supported liquid membrane, with mass transport modeling. Korean J. Chem. Eng. 31, 868–874 (2014). https://doi.org/10.1007/s11814-013-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0294-2

Keywords

Navigation