Skip to main content

Advertisement

Log in

Phase behavior of binary and ternary mixture for the poly(TBAEMA) and TBAEMA in supercritical solvents

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The cloud-point pressure of poly(t-butylaminoethyl methacrylate) [Poly(TBAEMA)] in various solvents such as supercritical carbon dioxide (CO2), dimethyl ether (DME) and t-butylaminoethyl methacrylate (TBAEMA) was measured to maximum pressure and temperature of 218.79 MPa and 452.9 K, respectively. The phase behavior for the Poly(TBAEMA)+CO2+TBAEMA mixture was investigated according to the various contribution factors, such as pressure, temperature and concentration with TBAEMA mass fraction of 9.9 wt%, 10.4 wt%, 14.9 wt%, 24.4 wt% and 35.2 wt%. The cloud point curves for the Poly(TBAEMA)+CO2+DME (15.6–78.7 wt%) systems show the variation of the (p, T) curve from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region as DME concentration increases. The experimental data for the CO2+TBAEMA system were reported at the broad temperature range of 313.2 K to 393.2 K and the pressure range of 3.70 MPa to 20.62 MPa. The CO2+TBAEMA binary system shows the type-I phase behavior with a continuous critical mixture curve, and is correlated by Peng-Robinson equation of state with the critical properties for TBAEMA obtained by Joback and Lyderson group contribution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Couto, V. Alvarez and F. Temelli, 11th International Symposium on Supercritical Fluids, Seoul, Korea (2015).

    Google Scholar 

  2. B. Abir, M. Yasmine, S. Michelle and E. Badens, 11th International Symposium on Supercritical Fluids, Seoul, Korea (2015).

    Google Scholar 

  3. I. Ushiki, N. Takahashi, T. Shimizu, M. Ota, Y. Sato, H. Inomata and R. L. Smith Jr., 11th International Symposium on Supercritical Fluids, Seoul, Korea (2015).

    Google Scholar 

  4. B. Seo, T. Kim, J. Y. Kim, K. D. Lee, J. S. Kim and Y. W. Lee, 11th International Symposium on Supercritical Fluids, Seoul, Korea (2015).

    Google Scholar 

  5. T. J. Yoon, W. S. Son, H. J. Park, B. Seo, T. Kim and Y. W. Lee, 11th International Symposium on Supercritical Fluids, Seoul, Korea (2015).

    Google Scholar 

  6. C. F. Kirby and M. A. McHugh, Chem. Rev., 99, 565 (1999).

    Article  CAS  Google Scholar 

  7. Y. S. Jang, Y. S. Choi and H. S. Byun, Korean J. Chem. Eng., 32, 958 (2015).

    Article  CAS  Google Scholar 

  8. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, Butterworth, Boston, MA (1994).

    Google Scholar 

  9. S. D. Yoon and H. S. Byun, Korean J. Chem. Eng., 31, 522 (2014).

    Article  CAS  Google Scholar 

  10. C. R. Kim and H. S. Byun, Fluid Phase Equilib., 381, 51 (2014).

    Article  CAS  Google Scholar 

  11. A. D. P. do Nascimentoa, L. A. L. Soaresb, L. Stragevitcha and L. Danielski, J. Supercrit. Fluids, 111, 1 (2016).

    Article  Google Scholar 

  12. T. Fang, J. Shi, X. Sun, Y. Shen, Y. Yan, J. Zhang and B. Liu, J. Supercrit. Fluids, 113, 10 (2016).

    Article  CAS  Google Scholar 

  13. C. R. Kim and H. S. Byun, J. Chem. Thermodyn., 97, 26 (2016).

    Article  CAS  Google Scholar 

  14. S. H. Cho, C. R. Kim, S. D. Yoon and H. S. Byun, Fluid Phase Equilib., 396, 74 (2015).

    Article  CAS  Google Scholar 

  15. T. H. J. M. Waegemaekers and M. P. M. Bensink, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 137, 95 (1984).

    Article  CAS  Google Scholar 

  16. A. R. Singh, W. H. Lawrence and J. Autian, J. Dental Res., 51, 1632 (1972).

    Article  CAS  Google Scholar 

  17. M. A. Compagnoni, A. C. Pero, S. M. M. Ramos, J. Marra, A. G. Paleari and L. S. Rodriguez, Gerodontology, 31, 220 (2014).

    Article  Google Scholar 

  18. F. Brodkorb, B. Fischer, K. Kalbfleisch, O. Robers, C. Braun, S. Dohlen, J. Kreyenschmidt, R. Lorenz and M. Kreyenschmidt, Int. J. Mol. Sci., 16, 20050 (2015).

    Article  CAS  Google Scholar 

  19. P. Ottersbach, F. Hill, F. F. Hill, R. L. Hill and C. Anders, US Patent, 6,096,800 (1998).

    Google Scholar 

  20. A. J. Morse, S. P. Armes, K. L. Thompson, D. Dupin, L. A. Fielding, P. Mills and R. Swart, Langmuir, 29, 5466 (2013).

    Article  CAS  Google Scholar 

  21. B. Chu, J. Wang and W. J. Shuely, Polymer, 31, 805 (1990).

    Article  CAS  Google Scholar 

  22. http://www.specialty-monomers.basf.com/portal/streamer?fid=235709 (Aug. 22, 2016).

  23. M. Gornert and G. Sadowski, J. Supercritical Fluids, 46, 218 (2008).

    Article  Google Scholar 

  24. C. Domingo, A. Vega, M. A. Fanovich, C. Elvira and P. Subra, J. Appl. Polym. Sci., 90, 3652 (2003).

    Article  CAS  Google Scholar 

  25. W. Bae, S. Kwon, H. S. Byun and H. Kim, J. Supercrit. Fluids, 30, 127 (2004).

    Article  CAS  Google Scholar 

  26. S. Liu, D. H. Lee and H. S. Byun, J. Chem. Eng. Data, 52, 410 (2007).

    Article  CAS  Google Scholar 

  27. R. L. Scott and P. B. van Konynenburg, Discuss. Faraday Soc., 49, 87 (1970).

    Article  Google Scholar 

  28. M. Lora and M. A. McHugh, Fluid Phase Equilib., 157, 285 (1999).

    Article  CAS  Google Scholar 

  29. S. H. Baek and H. S. Byun, J. Chem. Thermodyn., 92, 191 (2016).

    Article  CAS  Google Scholar 

  30. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The Properties of Gases and Liquid, 5th Ed., McGraw-Hill, New York (2001).

    Google Scholar 

  31. K. L. Albrecht, F. P. Stein, S. J Han, C. J. Gregg and M. Radosz, Fluid Phase Equilib., 117, 84 (1996).

    Article  CAS  Google Scholar 

  32. J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd Ed., Englewood Cliffs, Prentice-Hall, NJ (1986).

    Google Scholar 

  33. C. Y. Tsang and W. B. Streett, J. Chem. Eng. Data, 26, 155 (1981).

    Article  CAS  Google Scholar 

  34. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Res. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  35. H. S. Byun, Korean Chem. Eng. Res., 54, 206 (2016).

    Article  CAS  Google Scholar 

  36. J. E. Kim, J. W. Kang and J. S. Lim, Korean J. Chem. Eng., 32, 1678 (2015).

    Article  CAS  Google Scholar 

  37. B. C. Lee and S. G. Nam, Korean J. Chem. Eng., 32, 521 (2015).

    Article  CAS  Google Scholar 

  38. Y. S. Choi, S. W. Choi and H. S. Byun, Korean J. Chem. Eng., 33, 277 (2016).

    Article  CAS  Google Scholar 

  39. S. D. Yoon and H. S. Byun, J. Chem. Thermodyn., 71, 91 (2014).

    Article  CAS  Google Scholar 

  40. R. D. Chirico, M. Frenkel, V. V. Diky, K. N. Marsh and R. C. Wilhoit, J. Chem. Eng. Data, 48, 1344 (2003).

    Article  CAS  Google Scholar 

  41. B. Folie, C. Gregg, G. Luft and M. Radosz, Fluid Phase Equilib., 120, 11 (1996).

    Article  CAS  Google Scholar 

  42. H. S. Byun and C. Park, Korean J. Chem. Eng., 19, 126 (2002).

    Article  CAS  Google Scholar 

  43. https://scientificpolymer.com/shop/t-butylaminoethyl-methacrylate-2/ (Aug. 19, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Soo Byun.

Additional information

This article is dedicated to Prof. Ki-Pung Yoo on the occasion of his retirement from Sogang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BS., Byun, HS. Phase behavior of binary and ternary mixture for the poly(TBAEMA) and TBAEMA in supercritical solvents. Korean J. Chem. Eng. 34, 2056–2064 (2017). https://doi.org/10.1007/s11814-017-0091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0091-4

Keywords

Navigation