Skip to main content

Advertisement

Log in

Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectrochemical water splitting

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report photoelectrochemical hydrogen evolution reaction using a Cu2O-based photocathode with a layer doped with Zn ions. The doping results in the shift of the onset flat-band potential of the photocathode, likely a consequence of maximized band-bending in the Cu2O/Zn : Cu2O heterojunction. Systematic electrochemical analysis reveals that expansion of depletion region is responsible for the enhanced photoelectrochemical performance, e.g., the increase of photocurrent and reduced internal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci., 103, 15729 (2006).

    Article  CAS  Google Scholar 

  2. M. Graetzel, Acc. Chem. Res., 14, 376 (1981).

    Article  CAS  Google Scholar 

  3. O. Khaselev and J. A. Turner, Science, 280, 425 (1998).

    Article  CAS  Google Scholar 

  4. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 110, 6446 (2010).

    Article  CAS  Google Scholar 

  5. J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer and M. Grätzel, Nano Lett., 16, 1848 (2016).

    Article  CAS  Google Scholar 

  6. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley and M. Grätzel, Energy Environ. Sci., 5, 8673 (2012).

    Article  CAS  Google Scholar 

  7. M. Schreier, P. Gao, M. T. Mayer, J. Luo, T. Moehl, M. K. Nazeeruddin, S. D. Tilley and M. Grätzel, Energy Environ. Sci., 8, 855 (2015).

    Article  CAS  Google Scholar 

  8. A. A. Dubale, W.-N. Su, A. G. Tamirat, C.-J. Pan, B. A. Aragaw, H.-M. Chen, C.-H. Chen and B.-J. Hwang, J. Mater. Chem. A, 2, 18383 (2014).

    Article  CAS  Google Scholar 

  9. K. Lee, S. Lee, H. Cho, S. Jeong, W. D. Kim, S. Lee and D. C. Lee, J. Energy Chem. (2017), DOI:10.1016/j.jechem.2017.04.019.

    Google Scholar 

  10. L. I. Bendavid and E. A. Carter, J. Phys. Chem. B, 117, 15750 (2013).

    Article  CAS  Google Scholar 

  11. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nature Mater., 10, 456 (2011).

    Article  CAS  Google Scholar 

  12. S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik and M. Graetzel, Adv. Funct. Mater., 24, 303 (2014).

    Article  CAS  Google Scholar 

  13. C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata, K. Domen and J.-J. Delaunay, Energy Environ. Sci., 8, 1493 (2015).

    Article  CAS  Google Scholar 

  14. J. P. Bosco, S. B. Demers, G. M. Kimball, N. S. Lewis and H. A. Atwater, J. Appl. Phys., 112, 093703 (2012).

    Article  Google Scholar 

  15. P. Dai, W. Li, J. Xie, Y. He, J. Thorne, G. McMahon, J. Zhan and D. Wang, Angew. Chem. Int. Ed., 53, 13493 (2014).

    Article  CAS  Google Scholar 

  16. C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata, K. Domen and J.-J. Delaunay, Appl. Phys. Lett., 109, 033902 (2016).

    Article  Google Scholar 

  17. D. Aspnes, Surf. Sci., 132, 406 (1983).

    Article  CAS  Google Scholar 

  18. S. Hussain, C. Cao, Z. Usman, Z. Chen, G. Nabi, W. S. Khan, Z. Ali, F. K. Butt and T. Mahmood, Thin Solid Films, 522, 430 (2012).

    Article  CAS  Google Scholar 

  19. S. N. Kale, S. B. Ogale, S. R. Shinde, M. Sahasrabuddhe, V. N. Kulkarni, R. L. Greene and T. Venkatesan, Appl. Phys. Lett., 82, 2100 (2003).

    Article  CAS  Google Scholar 

  20. X.-M. Cai, X.-Q. Su, F. Ye, H. Wang, X.-Q. Tian, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, G.-X. Liang and V. A. L. Roy, Appl. Phys. Lett., 107, 083901 (2015).

    Article  Google Scholar 

  21. M. Wei, N. Braddon, D. Zhi, P. A. Midgley, S. K. Chen, M. G. Blamire and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 072514 (2005).

    Article  Google Scholar 

  22. F. Hu, Y. Zou, L. Wang, Y. Wen and Y. Xiong, Int. J. Hydrogen Energy, 41, 15172 (2016).

    Article  CAS  Google Scholar 

  23. A. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi and B. Muralidharan, Acta Metal. Sin. (Engl. Lett.), 28, 1041 (2015).

    Article  CAS  Google Scholar 

  24. F. Ye, X.-Q. Su, X.-M. Cai, Z.-H. Zheng, G.-X. Liang, D.-P. Zhang, J.-T. Luo and P. Fan, Thin Solid Films, 603, 395 (2016).

    Article  CAS  Google Scholar 

  25. L. Zhang, D. Jing, L. Guo and X. Yao, ACS Sustainable Chem. Eng., 2, 1446 (2014).

    Article  CAS  Google Scholar 

  26. C. Zhu and M. J. Panzer, ACS Appl. Mater. Interfaces, 7, 5624 (2015).

    Article  CAS  Google Scholar 

  27. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen, Nature Mater., 10, 456 (2011).

    Article  CAS  Google Scholar 

  28. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley and M. Gratzel, Energy Environ. Sci., 5, 8673 (2012).

    Article  CAS  Google Scholar 

  29. B. Heng, T. Xiao, W. Tao, X. Hu, X. Chen, B. Wang, D. Sun and Y. Tang, Crystal Growth Design, 12, 3998 (2012).

    Article  CAS  Google Scholar 

  30. L. Bertoluzzi and J. Bisquert, J. Phys. Chem. Lett., 3, 2517 (2012).

    Article  CAS  Google Scholar 

  31. C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, Angew. Chem. Int. Ed., 52, 12692 (2013).

    Article  CAS  Google Scholar 

  32. A. Paracchino, J. C. Brauer, J.-E. Moser, E. Thimsen and M. Graetzel, J. Phys. Chem. C, 116, 7341 (2012).

    Article  CAS  Google Scholar 

  33. K. Gelderman, L. Lee and S. Donne, J. Chem. Educ., 84, 685 (2007).

    Article  CAS  Google Scholar 

  34. A. Goltzene, C. Schwab and H. Wolf, Solid State Commun., 18, 1565 (1976).

    Article  CAS  Google Scholar 

  35. T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan and D. Wang, J. Phys. Chem. C, 117, 4619 (2013).

    Article  CAS  Google Scholar 

  36. S. Shyamal, P. Hajra, H. Mandal, A. Bera, D. Sariket, A. K. Satpati, S. Kundu and C. Bhattacharya, J. Mater. Chem. A, 4, 9244 (2016).

    Article  CAS  Google Scholar 

  37. A. Musa, T. Akomolafe and M. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998).

    Article  CAS  Google Scholar 

  38. M. Futsuhara, K. Yoshioka and O. Takai, Thin Solid Films, 317, 322 (1998).

    Article  CAS  Google Scholar 

  39. J. Hernandez, P. Wrschka and G. Oehrlein, J. Electrochem. Soc., 148, G389 (2001).

    Article  CAS  Google Scholar 

  40. W. W. Gärtner, Phys. Rev., 116, 84 (1959).

    Article  Google Scholar 

  41. Y. Liu, H. K. Turley, J. R. Tumbleston, E. T. Samulski and R. Lopez, Appl. Phys. Lett., 98, 162105 (2011).

    Article  Google Scholar 

  42. K. Khan, Y. Leung and J. Kos, Renew. Energy, 11, 293 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doh Chang Lee.

Additional information

The authors declare no competing financial interest.

Electronic supplementary material

11814_2017_225_MOESM1_ESM.pdf

Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectrochemical water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Lee, CH., Cheong, J.Y. et al. Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectrochemical water splitting. Korean J. Chem. Eng. 34, 3214–3219 (2017). https://doi.org/10.1007/s11814-017-0225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0225-8

Keywords

Navigation