Skip to main content

Advertisement

Log in

Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant development is the main factor that determines the insect-ontogeny interaction, since it leads to variations in resource quality and availability. The aim of this study was to test the hypothesis that plant development and varying tannin concentration leads to changes in species richness, abundance and composition of ants, free-feeding herbivores and galling insects associated with Copaifera langsdorffii (Fabaceae). The plant ontogeny and tannin concentration effects on insects were tested on 60 individuals with height varying from 0.9 to 11.0 m. A positive correlation was observed for tree height and species richness and abundance of ants, free-feeding and galling insects. In contrast, we did not find a significant relation between leaf tannin concentration and plant height, or richness and abundance of the different insect guilds. The assemblage of ants (composition of species) did not change between saplings and adults of C. langsdorffii. However, the assemblage of free-feeding herbivores and galling insects varied between the two development stages studied. The present study reveals an ontogenetic succession pattern for herbivore insects along the C. langsdorffii growth, probably due to both indirect and direct benefits from the host plant architecture and quality. Those plants with more complex architectures should support a wider diversity of insects, since they present higher number of sites for egg laying, housing, feeding and better environmental conditions. This is the first work to investigate the host plant ontogeny effect on insects in Cerrado “Savanna” vegetation. The pattern described, along with other previous studies, suggests a vast occurrence of ontogenetic succession in tropical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida CIM, Leite GLD, Rocha SL, Machado MML, Maldonado WCH (2006) Fenologia e artrópodes de Copaifera langsdorffii Desf. no Cerrado. Rev Bras Plant Med 8:64–70

    Google Scholar 

  • Basey JM, Jenkings SW, Busher PE (1988) Optimal central place foraging by beavers: tree size selection in relation to defensive chemicals of quaking aspen. Oecologia 76:278–282

    Article  Google Scholar 

  • Basset Y (1999) Diversity and abundance of insect herbivores collected on Castanopsis acuminatissima (Fabaceae) in New Guinea: relationships with leaf production and surrounding vegetation. Eur J Entomol 96:381–391

    Google Scholar 

  • Basset Y, Aberlench HP, Delvare G (1992) Abundance and stratification of foliage arthropods in a lowland rain forest of Cameroon. Ecol Entomol 17:310–318

    Article  Google Scholar 

  • Basset Y, Aberlenc HP, Barrios H, Curletti G, Berenger JM, Vesco JP, Causse P, Haug A, Hennion AS, Lesobre L, Marques F, O’Meara R (2001) Stratification and diel activity of arthropods in a lowland rainforest in Gabon Biological. J Linn Soc 72:585–607

    Article  Google Scholar 

  • Basset Y, Novovtny V, Miller SE, Kitching RL (2003) Arthropods of tropical forests. Spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240

    Article  Google Scholar 

  • Blüthgen N, Stork NG, Fiedler F (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106:344–358

    Article  Google Scholar 

  • Boege K (2005) Herbivore attack in Casearia nitida influenced by plant ontogenetic variation in foliage quality and plant architecture. Oecologia 143:117–125

    Article  PubMed  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  PubMed  Google Scholar 

  • Boege K, Marquis RJ (2006) Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos 115:559–572

    Article  Google Scholar 

  • Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, Cambridge

    Google Scholar 

  • Borror DJ, Triplehorn CA, Johnson NF (2002) An introduction to the study of insects. Saunders College Publing, Philadelphia

    Google Scholar 

  • Bowers MD, Stamp NE (1993) Effects of plant age, genotype and herbivory on Plantago performance and chemistry. Ecology 76:1778–1791

    Article  Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29:442–450

    Article  Google Scholar 

  • Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378

    Google Scholar 

  • Carvalho PER (2003) Espécies arbóreas brasileiras. Embrapa Informação Tecnológica, Embrapa Florestas, Brasília

    Google Scholar 

  • Clarke KR (1993) Nonparametric analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant anti-herbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Costa FV, Fagundes MF, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Austral 20:9–17

    Google Scholar 

  • Crawley M (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, Imperial College, Silwood Park

    Google Scholar 

  • Cuevas-Reyes P, Hanson P, Dardo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant richness, life-forms, host plant age and plant density. J Ecol 92:707–716

    Article  Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972

    Article  CAS  PubMed  Google Scholar 

  • Dejean A, Djiéto-Lordon C, Céréghino R, Leponce M (2008) Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees. Basic Appl Ecol 9:316–323

    Article  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99

    Article  Google Scholar 

  • Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153:353–364

    Article  PubMed  Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn MT, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Fagundes M, Woodman RL, Price PW (1999) Ants effects on three-trophic level interactions: plant, gall and parasitoids. Ecol Entomol 24:411–415

    Article  Google Scholar 

  • Ferraz FF, Monteiro RF (2003) Complex interaction envolving a gall midge Myrciamia maricaensis Maia (Diptera, Cecidomyiidae), phytophagous modifiers and parasitoids. Rev Bras Zool 3:433–437

    Google Scholar 

  • Fonseca CR, Benson WW (2003) Ontogenetic succession in Amazonian ant trees. Oikos 102:407–412

    Article  Google Scholar 

  • Fonseca CR, Fleck T, Fernandes GW (2006) Processes driving ontogenetic succession of galls in a canopy tree. Biotropica 38:514–521

    Article  Google Scholar 

  • Fowler SV (1984) Foliage value, apparency and defence investment in birch seedlings and trees. Oecologia 62:387–392

    Article  Google Scholar 

  • Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129:87–97

    Article  Google Scholar 

  • Fuchs A, Bowers MD (2004) Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. J Chem Ecol 30:1723–1741

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. J Chem Ecol 13:437–449

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Izaguirre MM, Mazza CA, Svatos A, Baldwin IT, Ballare CL (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuate and Nicotiana longiflora. Ann Bot 99:103–109

    Article  CAS  PubMed  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insect. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Mattson JMJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Medianero E, Barrios H (2001) Riqueza de insectos cecidógenos en el dosel y sotobosque e dos zonas ecológicas en panamá. Scientia (Panamá) 16:17–42

    Google Scholar 

  • Medianero E, Valderrama A, Barrios H (2003) Diversidad de insectos minadores de hojas y formadores de agallas en el dosel y sotobosque del bosque tropical. Acta Zool Mex 89:153–168

    Google Scholar 

  • Moran CV, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Anim Ecol 51:289–306

    Article  Google Scholar 

  • Neves FS, Araújo LS, Fagundes M, Espírito-Santo MM, Fernandes GW, Sánchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest-savanna transition in Brazil. Biotropica 42:112–118

    Article  Google Scholar 

  • Oliveira PS, Brandão CRF (1991) The ant community associated with extrafloral nectaries in the Brazilian cerrados. In: Huxley CR, Cutler DF (eds) Ant/plant interactions. Oxford University Press, Oxford, pp 198–212

    Google Scholar 

  • Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 431–455

    Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. http://www.R-project.org. Accessed 21 Oct, 2009

  • Ribas CR, Schoereder JH (2004) Determining factors of arboreal ant mosaics in Cerrado vegetation (Hymenoptera: Formicidae). Sociobiology 43:49–68

    Google Scholar 

  • Ribeiro SP, Braga OA, Silva CHL, Fernandes GW (1999) Leaf polyphenols in brazilian melastomataceae: sclerophylly, habitats and insect herbivores. Ecotropic 5:137–146

    Google Scholar 

  • Ribeiro JF, Fonseca CEL, Sousa-Silva JC (2001) Cerrado: Caracterização e Recuperação de Matas de Galeria. Planaltina: Embrapa Cerrados, Brasília

    Google Scholar 

  • Richards LA, Coley FD (2008) Combined effects of host plant quality and predation on a tropical lepidopteran: a comparison between treefall Gaps and the Understory in Panama. Biotropica 40:736–741

    Article  Google Scholar 

  • Riihimäki J, Vehvilänen H, Kaitaniemi P, Koricheva J (2006) Host tree architecture mediates the effect of predators on herbivore survival. Ecol Entomol 31:227–235

    Article  Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito Cultural, Rio de Janeiro

    Google Scholar 

  • Roslin T, Salminen JP (2008) Specialization pays off: contrasting effects of two types of tannin on oak specialist and generalist moth species. Oikos 117:1560–1568

    Article  Google Scholar 

  • Santos RM, Vieira FA, Fagundes M, Nunes YRF, Gusmão E (2007) Riqueza e similaridade florística de oito remanescentes florestais no norte de Minas Gerais. Rev Árvore 31:135–144

    Google Scholar 

  • Silva JO, Jesus FM, Fagundes M, Fernandes GW (2009) Esclerofilia, taninos e insetos herbívoros associados a Copaifera langsdorffii Desf. (Fabaceae: Caesalpinioideae) em área de transição Cerrado-Caatinga no Brasil. Ecol Austral 19:197–206

    Google Scholar 

  • Sterck FJ, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266–272

    Article  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood TR (1984) Insects on plants: community patterns and mechanisms. Blackwell Scientific Publication, London

    Google Scholar 

  • Styrsky JD, Eubanks MD (2007) Ecological consequences of interactions between ants and honeydew-producing insects. P Roy Soc Lond B Bio 274:151–164

    Article  Google Scholar 

  • Summerville KS, Crist TO, Kahn JK, Gering JC (2003) Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecol Entomol 28:747–757

    Article  Google Scholar 

  • Varanda EM, Pais MP (2006) Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian Cerrado. Braz J Biol 66:671–680

    Article  CAS  PubMed  Google Scholar 

  • Waltz AM, Whitham TG (1997) Plant development affects arthropod communities: opposing impacts of species removal. Ecology 78:2133–2144

    Article  Google Scholar 

  • Weis AE, Berenbaum MR (1989) Herbivorous insects and green plants. In: Abrahamson WG (ed) Plant-animal interactions. Mc Graw-Hill, New York, pp 123–162

    Google Scholar 

  • Wilson EO (1987) The arboreal ant fauna of Peruvian Amazon forests: a first assessment. Biotropica 19:245–251

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Queiroz ACM, Mota-Souza JG and Dantas KQ for helping in the field and laboratory work. The author Costa FV acknowledges a grant provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). Neves FS, Silva JO and Fagundes M greatly acknowledge a scholarship from Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG). This work was carried out with financial support from FAPEMIG (APQ-01231-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico de Siqueira Neves.

Additional information

Handling Editor: Joseph Dickens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, F.V., de Siqueira Neves, F., de Oliveira Silva, J. et al. Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod-Plant Interactions 5, 9–18 (2011). https://doi.org/10.1007/s11829-010-9111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-010-9111-6

Keywords

Navigation