Skip to main content
Log in

Fire triggers the activity of extrafloral nectaries, but ants fail to protect the plant against herbivores in a neotropical savanna

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of behaviour: sampling methods. Behavior 49:221–267

    Article  Google Scholar 

  • Alves-Silva E (2011) Post fire resprouting of Banisteriopsis malifolia (Malpighiaceae) and the role of extrafloral nectaries on the associated ant fauna in a Brazilian savanna. Sociobioloy 58:327–339

    Google Scholar 

  • Alves-Silva E, Del-Claro K (2010) Thrips in neotropics: what do we know so far? Trends Entomol 6:77–88

    Google Scholar 

  • Alves-Silva E, Del-Claro K (2011) Ectoparasitism and phoresy in Thysanoptera: the case of Aulacothrips dictyotus (Heterothripidae) in the Neotropical savanna. J Nat Hist 45:393–405. doi:10.1080/00222933.2010.534189

    Article  Google Scholar 

  • Alves-Silva E, Del-Claro K (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions. Naturwissenschaften 100:525–532. doi:10.1007/s00114-013-1048-z

    Article  CAS  PubMed  Google Scholar 

  • Alves-Silva E, Barônio GJ, Torezan-Silingardi HM, Del-Claro K (2013) Foraging behavior of Brachygastra lecheguana (Hymenoptera: Vespidae) on Banisteriopsis malifolia (Malpighiaceae): extrafloral nectar consumption and herbivore predation in a tending ant system. Entomol Sci 16:162–169. doi:10.1111/ens.12004

    Article  Google Scholar 

  • Araújo APA, De Paula JDA, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348. doi:10.1111/j.1442-9993.2006.01563.x

    Article  Google Scholar 

  • Bacelar EA, Correia CM, Moutinho-Pereira JM, Gonçalves BC, Lopes JI, Torres-Pereira JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239. doi:10.1093/treephys/24.2.233

    Article  PubMed  Google Scholar 

  • Bakker FM, Sabelis MW (1989) How larvae of thrips-tabaci reduce the attack success of phytoseiid predators. Entomol Exp Appl 50:47–51. doi:10.1111/j.1570-7458.1989.tb02313.x

    Article  Google Scholar 

  • Basset Y (1991) Influence of leaf traits on the spatial distribution of insect herbivores associated with an overstorey rainforest tree. Oecologia 87:388–393. doi:10.1007/BF00634596

    Article  Google Scholar 

  • Blum MS, Footit R, Fales HM (1992) Defensive chemistry and function of the anal exudate of the thrips Haplothrips leucanthemi. Comp Biochem Phys C 102:209–211. doi:10.1016/0742-8413(92)90066-G

    Article  Google Scholar 

  • Carter PE, Rypstra AL (1995) Top–down effects in soybean agroecosystems: spider density affects herbivore damage. Oikos 72:433–439

    Article  Google Scholar 

  • Cavalleri A, Kaminski LA, Mendonça MS Jr (2010) Ectoparasitism in Aulacothrips (Thysanoptera: Heterothripidae) revisited: host diversity on honeydew-producing hemiptera and description of a new species. Zool Anz 249:209–221. doi:10.1016/j.jcz.2010.09.002

    Article  Google Scholar 

  • Chen Y, Williams KA (2006) Quantifying western flower thrips (Frankliniella occidentalis Pergande) Thysanoptera:Thripidae) damage on Ivy Geranium (Pelargonium peltatum (L.) L’Her ex Ait.) (Geraniaceae Juss.) with Adobe® Photoshop™ and Scion® Image Software. J Kans. Entomol Soc 79:83–87. doi:10.1111/j.1439-0418.1993.tb00422.x

    Article  Google Scholar 

  • Cornelissen T, Fernandes GW, Vasconcelos-Neto J (2008) Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:1121–1130. doi:10.1111/j.0030-1299.2008.16588.x

    Article  Google Scholar 

  • Costa FV, Fagundes M, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Austral 20:9–17

    Google Scholar 

  • Cuda JP, Gillmore JL, Medal JC, Pedrosa-Macedo JH (2008) Mass rearing of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae), an approved biological control agent for Brazilian peppertree, Schinus terebinthifolius (Sapindales: Anacardiaceae). Fla Entomol 91:338–340. doi:10.1653/0015-4040(2008)91[338:MROPIT]2.0.CO;2

  • Del-Claro K, Berto V, Réu W (1996) Effect of herbivore deterrence by ants on the fruit set of an extrafloral nectary plant, Qualea multiflora (Vochysiaceae). J Trop Ecol 12:887–892. doi:10.1017/S0266467400010142

    Article  Google Scholar 

  • Del-Claro K, Marullo R, Mound LA (1997) A new Brazilian species of Heterothrips (Insecta: Thysanoptera) interacting with ants in Peixotoa tomentosa flowers (Malpighiaceae). J Nat Hist 31:1307–1312. doi:10.1080/00222939700770731

    Article  Google Scholar 

  • Freitas AVL, Oliveira PS (1996) Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. J Anim Ecol 65:205–210

    Article  Google Scholar 

  • Gaume L, Shenoy M, Zacharias M, Borges RM (2006) Co-existence of ants and an arboreal earthworm in a myrmecophyte of the Indian Western Ghats: anti-predation effect of the earthworm mucus. J Trop Ecol 22:341–344. doi:10.1017/s0266467405003111

    Article  Google Scholar 

  • Howard DF, Blum MS, Fales HM (1983) Defense in thrips: forbidding fruitiness of a lactone. Science 220:335–336. doi:10.1126/science.220.4594.335

    Article  CAS  PubMed  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top–down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Jones ME, Paine TD, Fenn ME (2008) The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution. Environ Pollut 151:434–442. doi:10.1016/j.envpol.2007.04.020

    Article  Google Scholar 

  • Kawai A (1990) Life cycle and population dynamics of Thrips palmi Karny. Jarq-Jpn Agr Res 23:282–288

    Google Scholar 

  • Kersch MF, Fonseca CR (2005) Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology 86:2117–2126. doi:10.1890/04-1916

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–29. doi:10.1146/annurev.en.28.010183.000323

    Article  Google Scholar 

  • Leather SR (1986) Insect species richness of the British Rosaceae: the importance of host range, plant architecture, age of establishment, taxonomic isolation and species-area relationships. J Anim Ecol 55:841–860

    Article  Google Scholar 

  • Lill JT, Marquis RJ (2003) Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak. Ecology 84:682–690. doi:10.1890/0012-9658(2003)084[0682:EEBCII]2.0.CO;2

    Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508. doi:10.1007/s10886-005-5793-0

    Article  CAS  PubMed  Google Scholar 

  • Magalhães S, van Rijn P, Montserrat M, Pallini A, Sabelis M (2007) Population dynamics of thrips prey and their mite predators in a refuge. Oecologia 150:557–568. doi:10.1007/s00442-006-0548-3

    Article  PubMed  Google Scholar 

  • Manrique V, Cuda JP, Overholt WA, Williams DA, Wheeler GS (2008) Effect of host-plant genotypes on the performance of three candidate biological control agents of Schinus terebinthifolius in Florida. Biol Control 47:167–171. doi:10.1016/j.biocontrol.2008.07.005

    Article  Google Scholar 

  • Marquis RJ, Diniz IR, Morais HC (2001) Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J Trop Ecol 17:127–148. doi:10.1017/S0266467401001080

    Article  Google Scholar 

  • Medeiros MB, Miranda HS (2008) Post-fire resprouting and mortality in cerrado woody plant species over a three-year period. Edinb J Bot 65:53–68. doi:10.1017/S0960428608004708

    Article  Google Scholar 

  • Milne M, Walter GH (2000) Feeding and breeding across host plants within a locality by the widespread thrips Frankliniella schultzei, and the invasive potential of polyphagous herbivores. Divers Distrib 6:243–257. doi:10.1046/j.1472-4642.2000.00089.x

    Article  Google Scholar 

  • Mody K, Linsenmair KE (2004) Plant-attracted ants affect arthropod community structure but not necessarily herbivory. Ecol Entomol 29:217–225. doi:10.1111/j.1365-2311.2004.0588.x

    Article  Google Scholar 

  • Moog U, Fiala B, Federle W, Maschwitz U (2002) Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. Am J Bot 89:50–59. doi:10.3732/ajb.89.1.50

    Article  PubMed  Google Scholar 

  • Moreno JM, Oechel WC (1991) Fire intensity and herbivory effects on postfire resprouting of Adenostoma fasciculatum in southern California chaparral. Oecologia 85:429–433. doi:10.1007/BF00320621

    Article  Google Scholar 

  • Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89. doi:10.1146/annurev.ento.51.110104.151044

    Article  CAS  PubMed  Google Scholar 

  • Mound LA, Terry I (2001) Thrips pollination of the central Australian cycad, Macrozamia macdonnellii (Cycadales). Int J Plant Sci 162:147–154. doi:10.1086/317899

    Article  Google Scholar 

  • Nascimento EA, Del-Claro K (2010) Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a Neotropical savanna Flora. Flora Morphol Distrib Funct Ecol Plants 205:754–756. doi:10.1016/j.flora.2009.12.040

    Article  Google Scholar 

  • Oliveira PS, Freitas AVL (2004) Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570. doi:10.1007/s00114-004-0585-x

    Article  CAS  PubMed  Google Scholar 

  • Paine TD (1992) Cuban laurel thrips (Thysanoptera: Phlaeothripidae) biology in Southern California: Seasonal abundance, temperature dependent development, leaf suitability, and predation. Ann Entomol Soc Am 85:164–172

    Google Scholar 

  • Peng RK, Christian K (2004) The weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the Northern Territory of Australia. Int J Pest Manag 50:107–114. doi:10.1080/09670870410001658125

    Article  Google Scholar 

  • Power ME (1992) Top–down and bottom-up forces in food webs: do plants have primacy. Ecology 73:733–746. doi:10.2307/1940153

    Article  Google Scholar 

  • Read J, Sanson GD, Garine-Wichatitsky M, Jaffré T (2006) Sclerophylly in two contrasting tropical environments: low nutrients vs. low rainfall. Am J Bot 93:1601–1614. doi:10.3732/ajb.93.11.1601

    Article  PubMed  Google Scholar 

  • Reich PB, Abrams MD, Ellsworth DS, Kruger EL, Tabone TJ (1990) Fire affects ecophysiology and community dynamics of central Wisconsin oak forest regeneration. Ecology 71:2179–2190. doi:10.2307/1938631

    Article  Google Scholar 

  • Rieske LK, Housman HH, Arthur MA (2002) Effects of prescribed fire on canopy foliar chemistry and suitability for an insect herbivore. Forest Ecol Manag 160:177–187. doi:10.1016/S0378-1127(01)00444-3

    Article  Google Scholar 

  • Santos J, Silveira F, Fernandes G (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137. doi:10.1007/s10682-007-9162-z

    Article  Google Scholar 

  • Schmidt IB, Sampaio AB, Borghetti F (2005) Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Bot Bras 19:927–934

    Article  Google Scholar 

  • Seyffarth JAS, Calouro AM, Price PW (1996) Leaf rollers in Ouratea hexasperma (Ochnaceae): fire effect and the plant vigor hypothesis. Rev Bras Biol 56:135–137

    Google Scholar 

  • Silva IA, Valenti MW, Silva-Matos DM (2009) Fire effects on the population structure of Zanthoxylum rhoifolium Lam (Rutaceae) in a Brazilian savanna. Braz J Biol 69:813–818. doi:10.1590/S1519-69842009000400008

    Article  CAS  PubMed  Google Scholar 

  • Van Mele P (2008) A historical review of research on the weaver ant Oecophylla in biological control. Agric For Entomol 10:13–22. doi:10.1111/j.1461-9563.2007.00350.x

    Google Scholar 

  • Varanda EM, Pais MP (2006) Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian Cerrado. Braz J Biol 66:671–680. doi:10.1590/S1519-69842006000400011

    Article  CAS  PubMed  Google Scholar 

  • Vieira EM, Andrade I, Price PW (1996) Fire effects on a Palicourea rigida (Rubiaceae) gall midge: a test of the plant vigor hypothesis. Biotropica 28:210–217

    Article  Google Scholar 

  • Wcislo WT, Schatz B (2003) Predator recognition and evasive behavior by sweat bees, Lasioglossum umbripenne (Hymenoptera: Halictidae), in response to predation by ants, Ectatomma ruidum (Hymenoptera: Formicidae). Behav Ecol Sociobiol 53:182–189. doi:10.1007/s00265-002-0564-1

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Bächtold, P.K.M. Mendonça, L. A. Kaminski and D. Lange for suggestions on early versions of the manuscript and the staff of the Clube de Caça e Pesca Itororó de Uberlândia, where the fieldwork was carried out. We are also grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Fapemig (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleber Del-Claro.

Additional information

Handling Editor: Robert Glinwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves-Silva, E., Del-Claro, K. Fire triggers the activity of extrafloral nectaries, but ants fail to protect the plant against herbivores in a neotropical savanna. Arthropod-Plant Interactions 8, 233–240 (2014). https://doi.org/10.1007/s11829-014-9301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-014-9301-8

Keywords

Navigation