Skip to main content
Log in

A Short Review on Model Order Reduction Based on Proper Generalized Decomposition

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper revisits a new model reduction methodology based on the use of separated representations, the so called Proper Generalized Decomposition—PGD. Space and time separated representations generalize Proper Orthogonal Decompositions—POD—avoiding any a priori knowledge on the solution in contrast to the vast majority of POD based model reduction technologies as well as reduced bases approaches. Moreover, PGD allows to treat efficiently models defined in degenerated domains as well as the multidimensional models arising from multidimensional physics (quantum chemistry, kinetic theory descriptions,…) or from the standard ones when some sources of variability are introduced in the model as extra-coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allix O, Ladevèze P, Gilleta D, Ohayon R (1989) A damage prediction method for composite structures. Int J Numer Methods Eng 27(2):271–283

    Article  MATH  Google Scholar 

  2. Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191:2727–2758

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  4. Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147

    Article  MATH  Google Scholar 

  5. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation. J Non-Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  6. Ammar A, Pruliere E, Chinesta F, Laso M (2009) Reduced numerical modeling of flows involving liquid-crystalline polymeres. J Non-Newton Fluid Mech 160:140–156

    Article  Google Scholar 

  7. Ammar A, Pruliere E, Ferec J, Chinesta F, Cueto E (2009) Coupling finite elements and reduced approximation bases. Eur J Comput Mech 18(5–6):445–463

    Google Scholar 

  8. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: applications in computational rheology. Commun Math Sci 8(3):671–695

    MathSciNet  MATH  Google Scholar 

  9. Ammar A, Chinesta F, Falco A (2010) On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch Comput Methods Eng 17(4):473–486

    MathSciNet  Google Scholar 

  10. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880

    Article  MathSciNet  Google Scholar 

  11. Ammar A, Normandin M, Chinesta F (2010) Solving parametric complex fluids models in rheometric flows. J Non-Newton Fluid Mech 165:1588–1601

    Article  Google Scholar 

  12. Ammar A, Chinesta F, Cueto E (2011) Coupling finite elements and proper generalized decompositions. Int J Multiscale Comput Eng 9(1):17–33

    Article  Google Scholar 

  13. Ammar A, Chinesta F, Cueto E, Doblare M (2011) Proper generalized decomposition of time-multiscale models. Int J Numer Methods Eng. doi:10.1002/nme.3331

  14. Aubard X, Cluzel C, Guitard L, Ladevèze P (2000) Damage modeling at two scales for 4D carbon/carbon composites. Comput Struct 78(1–3):83–91

    Article  Google Scholar 

  15. Beringhier M, Gueguen M, Grandidier JC (2010) Solution of strongly coupled multiphysics problems using space-time separated representations: application to thermoviscoelasticity. Arch Comput Methods Eng 17(4):393–401

    MathSciNet  Google Scholar 

  16. Blanzé C, Danwe R, Ladevèze P, Moreau J-P (1993) Une méthode pour l’étude d’assemblage de structures massives. In: Colloque National en Calcul des Structures, Hermès, pp 913–919

    Google Scholar 

  17. Blanzé C, Champaney L, Cognard J-Y, Ladevèze P (1996) A modular approach to structure assembly computations—application to contact problems. Eng Comput 13(1):15

    Article  Google Scholar 

  18. Bognet B, Leygue A, Chinesta F, Poitou A, Bordeu F (2011) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2011.08.025

  19. Boisse P, Ladevèze P, Rougée P (1989) A large time increment method for elastoplastic problems. Eur J Mech A, Solids 8(4):257–275

    MATH  Google Scholar 

  20. Boisse P, Bussy P, Ladevèze P (1990) A new approach in nonlinear mechanics—the large time increment method. Int J Numer Methods Eng 29(3):647–663

    Article  MATH  Google Scholar 

  21. Boisse P, Ladevèze P, Poss M, Rougée P (1991) A new large time increment algorithm for anisotropic plasticity. Int J Plast 7(1–2):65–77

    Article  MATH  Google Scholar 

  22. Boucard PA, Ladevèze P, Poss M, Rougée P (1997) A non-incremental approach for large displacement problems. Comput Struct 64:499–508

    Article  MATH  Google Scholar 

  23. Boucard PA, Ladevèze P (1999) A multiple solution method for non-linear structural mechanics. Mech Eng 50(5):317–328

    Google Scholar 

  24. Boucard PA, Ladevèze P (1999) Une application de la méthode latin au calcul multirésolution de structures non linéaires. In: Revue Européenne des Eléments Finis, pp 903–920

    Google Scholar 

  25. Boucard PA (2001) Application of the LATIN method to the calculation of response surfaces. In: 1st MIT conference on computational fluid and solid mechanics, vol 1, pp 78–81

    Chapter  Google Scholar 

  26. Boucard PA, Derumaux M, Ladevèze P (2003) Macro-meso models for joints submitted to pyrotechnic shock. In: Computational fluid and solid mechanics, vol 1–2, pp 139–142.

    Chapter  Google Scholar 

  27. Bussy P, Rougée P, Vauchez P (1990) The large time increment method for numerical simulation of metal forming processes. In: NUMETA. Elsevier, Amsterdam, pp 102–109

    Google Scholar 

  28. Caignot A, Ladevèze P, Néron D, Durand JF (2010) Virtual testing for the prediction of damping in joints. Eng Comput 27(5–6):621–644

    Google Scholar 

  29. Cancès E, Ehrlacher V, Lelièvre T (2011) Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Math Models Methods Appl Sci. doi:10.1142/S0218202511005799

  30. Champaney L, Cognard J-Y, Dureisseix D, Ladevèze P (1997) Large scale applications on parallel computers of a mixed domain decomposition method. Comput Mech 19(4):253–263

    Article  MATH  Google Scholar 

  31. Champaney L, Cognard J-Y, Ladevèze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73(1–5):249–266

    Article  MATH  Google Scholar 

  32. Chevreuil M, Nouy A (2011) Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int J Numer Methods Eng. doi:10.1002/nme.3249

  33. Chinesta F, Ammar A, Falco A, Laso M (2007) On the reduction of stochastic kinetic theory models of complex fluids. Model Simul Mater Sci Eng 15:639–652

    Article  Google Scholar 

  34. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197(5):400–413

    Article  MathSciNet  MATH  Google Scholar 

  35. Ammar A, Chinesta F, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213

    Article  Google Scholar 

  36. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9):1114–1132

    Article  MathSciNet  MATH  Google Scholar 

  37. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the Proper Generalized Decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    MathSciNet  Google Scholar 

  38. Chinesta F, Ammar A, Cueto E (2010) On the use of proper generalized decompositions for solving the multidimensional chemical master equation. Eur J Comput Mech 19:53–64

    Google Scholar 

  39. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166:578–592

    Article  MATH  Google Scholar 

  40. Cognard J-Y (1990) Le traitement des problèmes nonlinéaires à grand nombre de degrés de liberté par la méthode à grand incrément de temps. In: Fouet J-M et al. (eds) Calcul des structures et intelligence artificielle, Pluralis, pp 211–222

    Google Scholar 

  41. Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9:141–157

    Article  MATH  Google Scholar 

  42. Cognard J-Y, Ladevèze P, Talbot P (1999) A large time increment approach for thermo-mechanical problems. Adv Eng Softw 30(9–11):583–593

    Article  Google Scholar 

  43. Gonzalez D, Cueto E, Chinesta F, Debeugny L, Diez P, Huerta A (2010) Int J Mater Form 3(1):883–886

    Article  Google Scholar 

  44. DeVore RA, Temlyakov VN (1996) Some remarks on greedy algorithms. Adv Comput Math 5:173–187

    Article  MathSciNet  MATH  Google Scholar 

  45. Dumon A, Allery C, Ammar A (2011) Proper general decomposition (PGD) for the resolution of Navier-Stokes equations. J Comput Phys 230(4):1387–1407

    Article  MathSciNet  MATH  Google Scholar 

  46. Dureisseix D, Ladevèze P, Néron D, Schrefler BA (2003) A multi-time-scale strategy for multiphysics problems: application to poroelasticity. Int J Multiscale Comput Eng 1(4):387–400

    Article  Google Scholar 

  47. Dureisseix D, Ladevèze P, Schrefler BA (2003) A latin computational strategy for multiphysics problems: application to poroelasticity. Int J Numer Methods Eng 56(10):1489–1510

    Article  MATH  Google Scholar 

  48. Falco A (2010) Algorithms and numerical methods for high dimensional financial market models. Rev Econ Financ, 20:51–68

    MathSciNet  Google Scholar 

  49. Falcó A, Nouy A (2011) A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J Math Anal Appl 376:469–480

    Article  MathSciNet  MATH  Google Scholar 

  50. Falco A, Nouy A Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. arXiv:1106.4424v1

  51. Figueroa L, Süli E (2011) Greedy approximation of high-dimensional Ornstein-Uhlenbeck operators with unbounded drift. arXiv:1103.0726

  52. Ghnatios Ch, Chinesta F, Cueto E, Leygue A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Composites, Part A, Appl Sci Manuf 42:1169–1178

    Article  Google Scholar 

  53. Ghnatios Ch, Masson F, Huerta A, Cueto E, Leygue A, Chinesta F (2011) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng. Submitted

  54. Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances on the use of separated representations. Int J Numer Methods Eng 81(5):637–659

    MathSciNet  MATH  Google Scholar 

  55. Gonzalez D, Masson F, Poulhaon F, Leygue A, Cueto E, Chinesta F (2011) Proper generalized decomposition based dynamic data-driven inverse identification. Mathematics and Computers in Simulation, Submitted, 2011

  56. Bonithon G, Joyot P, Chinesta F, Villon P (2011) Non-incremental boundary element discretization of parabolic models based on the use of proper generalized decompositions. Eng Anal Bound Elem 35(1):2–17

    Article  MathSciNet  Google Scholar 

  57. Ladevèze P (1985) New algorithms: mechanical framework and development (in french). Technical Report 57, LMT-Cachan

  58. Ladevèze P (1985) On a family of algorithms for structural mechanics. CR Acad Sci Paris 300(2):41–44 (in french)

    MATH  Google Scholar 

  59. Ladevèze P, Rougée P (1985) Viscoplasticity under cyclic loadings: properties of the homogenized cycle. CR Acad Sci 301:891–894

    MATH  Google Scholar 

  60. Ladevèze P (1989) The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. CR Acad Sci Paris, 309:1095–1099

    MATH  Google Scholar 

  61. Ladevèze P (1991) New advances in the large time increment method. In: Ladevèze P, Zienkiewicz OC (eds) New advances in computational structural mechanics. Elsevier, Amsterdam, pp 3–21

    Google Scholar 

  62. Ladevèze P, Lorong Ph (1992) A large time increment approach with domain decomposition technique for mechanical non linear problems. In: Computing methods in applied sciences and engineering INRIA, pp. 569–578

  63. Ladevèze P, Lorong Ph (1993) Formulation et stratégies “parallèles” pour l’analyse non linéaire des structures. In: Colloque national en calcul des structures. Hermès, Paris, pp 910–919

    Google Scholar 

  64. Ladevèze P (1996) Mécanique non linéaire des structures. Hermès, Paris

    MATH  Google Scholar 

  65. Ladevèze P (1997) A computational technique for the integrals over the time-space domain in connection with the LATIN method (in french). Technical Report 193, LMT-Cachan

  66. Ladevèze P, Dureisseix D (1998) A 2-level and mixed domain decomposition approach for structural analysis. Contemp Math 218:246–253

    Google Scholar 

  67. Ladevèze P (1999) Nonlinear computationnal structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin

    Google Scholar 

  68. Ladevèze P, Cognard J-Y, Talbot P (1999) A non-incremental and adaptive computational approach in thermo-viscoplasticity. In: Bruhns OT, Stein E (eds) IUTAM symposium on micro- and macrostructural aspects of the thermoplasticity, pp 281–291

    Google Scholar 

  69. Ladevèze P, Dureisseix D (1999) A new micro-macro computational strategy for structural analysis. CR Acad Sci, Ser Ii, Fascicule, B—Mec Phys Astron, 327(12):1237–1244

    MATH  Google Scholar 

  70. Ladevèze P, Guitard L, Champaney L, Aubard X (2000) Debond modeling for multidirectional composites. Comput Methods Appl Mech Eng 185(2–4):109–122

    Article  MATH  Google Scholar 

  71. Ladevèze P, Lemoussu H, Boucard PA (2000) A modular approach to 3-d impact computation with frictional contact. Comput Struct 78(1–3):45–51

    Article  Google Scholar 

  72. Ladevèze P, Perego U (2000) Duality preserving discretization of the large time increment methods. Comput Methods Appl Mech Eng 189(1):205–232

    Article  MATH  Google Scholar 

  73. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for high heterogeneous structures. Int J Numer Methods Eng, 52(1–2):121–138

    Article  Google Scholar 

  74. Ladevèze P, Nouy A (2002) A multiscale computational method with time and space homogenization. CR Mec, 330(10):683–689

    Article  MATH  Google Scholar 

  75. Ladevèze P, Nouy A (2002) Une stratégie de calcul multiéchelle avec homogénéisation en espace et en temps. CR Mec, 330:683–689

    Article  MATH  Google Scholar 

  76. Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng, 191(43):4869–4891

    Article  MATH  Google Scholar 

  77. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng, 192(28–30):3061–3087

    Article  MATH  Google Scholar 

  78. Ladevèze P (2004) Multiscale modeling and computational strategies for composites. Int J Numer Methods Eng, 60(1):233–253

    Article  MATH  Google Scholar 

  79. Ladevèze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 96:1526–1540

    Article  Google Scholar 

  80. Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale methods—bridging the scales in science and engineering. Oxford University Press, Oxford, pp 247–282. chapter Space Time Scale Bridging methods

    Google Scholar 

  81. Ladevèze P, Passieux J-C, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng, 199(21–22):1287–1296

    Article  Google Scholar 

  82. Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047

    Article  Google Scholar 

  83. Lamari H, Chinesta F, Ammar A, Cueto E (2009) Non-conventional numerical strategies in the advanced simulation of materials and processes. Int J Mod Manuf Technol, 1:49–56

    Google Scholar 

  84. Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F, Chinesta F (2010) Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Arch Comput Methods Eng, 17(4):373–391

    MathSciNet  Google Scholar 

  85. Lamari H, Ammar A, Leygue A, Chinesta F On the solution of the multidimensional Langerõs equation by using the proper generalized decomposition method for modeling phase transitions. Model Simul Mater Sci Eng. Submitted

  86. Lemoussu H, Boucard P-A, Ladevèze P (2002) A 3d shock computational strategy for real assembly and shock attenuator. Adv Eng Softw 33(7–10):517–526

    Article  Google Scholar 

  87. Leonenko GM, Phillips TN (2009) On the solution of the Fokker-Planck equation using a high-order reduced basis approximation. Comput Methods Appl Mech Eng 199(1–4):158–168

    Article  MathSciNet  Google Scholar 

  88. Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4):I465–472

    MathSciNet  Google Scholar 

  89. Le Bris C, Lelièvre T, Maday Y (2009) Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr Approx 30:621–651

    Article  MathSciNet  MATH  Google Scholar 

  90. Mokdad B, Pruliere E, Ammar A, Chinesta F (2007) On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl Rheol, 17(2):26494, 1–4

    Google Scholar 

  91. Mokdad B, Ammar A, Normandin M, Chinesta F, Clermont JR (2010) A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models. Math Comput Simul 80:1936–1961

    Article  MathSciNet  MATH  Google Scholar 

  92. Néron D, Ladevèze P, Dureisseix D, Schrefler BA (2004) Accounting for nonlinear aspects in multiphysics problems: application to poroelasticity. In: Lecture notes in computer science, vol 3039, pp 612–620

    Google Scholar 

  93. Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804

    Article  MATH  Google Scholar 

  94. Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084

    Article  MATH  Google Scholar 

  95. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372

    MathSciNet  Google Scholar 

  96. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91:223–231

    Article  Google Scholar 

  97. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206

    MathSciNet  MATH  Google Scholar 

  98. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2011) Accounting for large deformations in real-time simulations of soft tissues based on reduced order models. Comput Methods Program Biomed. doi:10.1016/j.cmpb.2010.06.012

  99. Niroomandi S, Alfaro I, Gonzalez D, Cueto E, Chinesta F (2011) Real time simulation of surgery by reduced order modeling and X-FEM techniques. Int J Numer Methods Biomed Eng In press

  100. Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial type approximation technique for solving micro problems. Int J Multiscale Comput Eng 170(2):557–574

    Article  Google Scholar 

  101. Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196:4521–4537

    Article  MathSciNet  MATH  Google Scholar 

  102. Nouy A (2007) Méthode de construction de bases spectrales généralisées pour l’approximation de problèmes stochastiques. Mec Ind 8(3):283–288

    Google Scholar 

  103. Nouy A (2008) Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms. Comput Methods Appl Mech Eng 197:4718–4736

    Article  MathSciNet  MATH  Google Scholar 

  104. Nouy A, Le Maître O (2009) Generalized spectral decomposition method for stochastic non linear problems. J Comput Phys, 228(1):202–235

    Article  MathSciNet  MATH  Google Scholar 

  105. Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng, 16(3):251–285

    Article  MathSciNet  Google Scholar 

  106. Nouy A (2010) Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch Comput Methods Eng, 17:403–434

    MathSciNet  Google Scholar 

  107. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199:1603–1626

    Article  MathSciNet  Google Scholar 

  108. Nouy A, Falco A Constrained tensor product approximations based on penalized best approximations. Linear Algebra Appl, oai:hal.archives-ouvertes.fr:hal-00577942

  109. Nouy A, Chevreuil M, Safatly E (2011) Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2011.07.002

  110. Passieux J-C, Ladevèze P, Néron D (2010) A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46(4):621–633

    Article  MathSciNet  MATH  Google Scholar 

  111. Pineda M, Chinesta F, Roger J, Riera M, Perez J, Daim F (2010) Simulation of skin effect via separated representations. Int J Comput Math Electr Electron Eng, 29(4):919–929

    Article  MATH  Google Scholar 

  112. Pruliere E, Ammar A, El Kissi N, Chinesta F (2009) Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers. Arch Comput Methods Eng, 16:1–30

    Article  MathSciNet  MATH  Google Scholar 

  113. Pruliere E, Ferec J, Chinesta F, Ammar A (2010) An efficient reduced simulation of residual stresses in composites forming processes. Int J Mater Form, 3(2):1339–1350

    Article  Google Scholar 

  114. Pruliere E, Chinesta F, Ammar A (2010) On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition. Math Comput Simul 81:791–810

    Article  MathSciNet  MATH  Google Scholar 

  115. Ryckelynck D, Hermanns L, Chinesta F, Alarcon E (2005) An efficient a priori model reduction for boundary element models. Eng Anal Bound Elem 29:796–801

    Article  MATH  Google Scholar 

  116. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng, 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  117. Schmidt F, Pirc N, Mongeau M, Chinesta F (2011) Efficient mould cooling optimization by using model reduction. Int J Mater Form, 4(1):71–82

    Article  Google Scholar 

  118. Violeau D, Ladevèze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol, 69(9):1364–1371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta.

Additional information

This work has been partially supported by the IUF—Institut Universitaire de France—, the french ANR COSINUS SIMDREAM project and the Spanish Ministry of Science and Innovation, through grants number CICYT-DPI2008-918 and DPI2011-27778-C02-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinesta, F., Ladeveze, P. & Cueto, E. A Short Review on Model Order Reduction Based on Proper Generalized Decomposition. Arch Computat Methods Eng 18, 395–404 (2011). https://doi.org/10.1007/s11831-011-9064-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9064-7

Keywords

Navigation