Skip to main content
Log in

System Identification Methods for (Operational) Modal Analysis: Review and Comparison

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Operational modal analysis deals with the estimation of modal parameters from vibration data obtained in operational rather than laboratory conditions. This paper extensively reviews operational modal analysis approaches and related system identification methods. First, the mathematical models employed in identification are related to the equations of motion, and their modal structure is revealed. Then, strategies that are common to the vast majority of identification algorithms are discussed before detailing some powerful algorithms. The extraction and validation of modal parameter estimates and their uncertainties from the identified system models is discussed as well. Finally, different modal analysis approaches and algorithms are compared in an extensive Monte Carlo simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Notes

  1. The term realization originates from analog computer realizations for the integration of differential equations [41]. Since the integrator outputs can be defined as the states of a state-space model [42, p. 63], constructing a state-space model is usually called realization in the wide sense. System realization in the strict sense is the identification of a state-space description from an impulse response sequence [43]. In this text, both denotations are frequently used.

  2. The linearity properties can be defined well in the behavioral approach to system theory [44], while the standard definition of linearity, viz., applying a linear combination of inputs yields a response that is the same linear combination of the responses to the individual inputs, can yield problems [42, 45]. However, the standard definition will do for our purposes; we refer to [42, 45] for a detailed discussion.

  3. Mathematically because δ(t)δ(t) is undefined [46, p. 171].

  4. This is possible since both sides of (41) can be left-multiplied with \(\boldsymbol {A}_{n_{a}}^{-1}\).

  5. This is possible by a change of basis: \(\boldsymbol {x}' = \boldsymbol {A}_{n_{a}}^{-1}\boldsymbol {x}'_{new}\).

  6. Note that \(\boldsymbol {y}_{k}^{s}\) is straightforwardly obtained by subtracting the deterministic part \(\boldsymbol {y}_{k}^{d}\) from y k .

  7. Note that, when taking the double-sided z transform, no initial conditions are taken into account. Therefore, the Kalman filter is time-invariant, i.e., independent of z, as discussed in Sect. 2.4.3.

  8. Sometimes a block Toeplitz structure is proposed instead of a block Hankel structure, see for instance [122]. This is just a matter of notation: the resulting system estimate remains the same.

  9. (u k ) is said to be persistently exciting of order k 2 when \(\boldsymbol {U}_{k_{1}|k_{1}+k_{2}-1}\) has full row rank.

  10. This can be relaxed to n when the direct transmission is nonzero, i.e., when the outputs are accelerations.

  11. If y d represents the deterministic part of a channel and y s the stochastic part, the SNR is calculated in dB as \(20 \log( \frac{\mathrm{RMS}(y^{d})}{\mathrm{RMS}(y^{s})})\).

  12. LMS PolyMAX is a registered trademark of LMS International.

  13. If ȷȷ B n B , the last block can contain the additional ȷȷ B n B columns. The derivation still holds when this block is scaled with ȷ B +(ȷȷ B n B ) instead of ȷ B .

  14. Since the stochastic outputs are assumed to have a zero mean value, their correlation matrices equal their covariance matrices, hence the name SSI-cov.

  15. Most subspace algorithms use the estimator for \(\hat{\boldsymbol {X}}_{\imath+1|\imath+1}^{s}\), where \(\underline{\hat{\boldsymbol {\mathcal{O}}}_{\imath}}\) was defined in (191). However, with this choice, the estimates of \(\hat{\boldsymbol {X}}_{\imath|\imath}^{s}\) and \(\hat{\boldsymbol {X}}_{\imath+1|\imath+1}^{s}\) are not guaranteed to lie in the same state-space basis, and this introduces an additional estimation error for finite ȷ [162].

  16. The persistency of excitation condition on the input can be relaxed to be of order 2ı+n instead of 2(ı+)+n.

References

  1. Carne TG, James GH III (2010) The inception of OMA in the development of modal testing technology for wind turbines. Mech Syst Signal Process 24(5):1213–1226

    Google Scholar 

  2. Hermans L, Van der Auweraer H (1999) Modal testing and analysis of structures under operational conditions: industrial applications. Mech Syst Signal Process 13(2):193–216

    Google Scholar 

  3. James GH III (2003) Modal parameter estimation from space shuttle flight data. In: Proceedings of the 21st international modal analysis conference, Kissimmee, Fl, February

    Google Scholar 

  4. Clarke H, Stainsby J, Carden EP (2011) Operational modal analysis of resiliently mounted marine diesel generator/alternator. In: Proulx T (ed) Rotating machinery, structural health monitoring, and shock and vibration topics, Jacksonville, FL, February. Proceedings of the 29th international modal analysis conference series, vol 5. Springer, Berlin, pp 1461–1473

    Google Scholar 

  5. Reynders E, Degrauwe D, De Roeck G, Magalhães F, Caetano E (2010) Combined experimental-operational modal testing of footbridges. ASCE J Eng Mech 136(6):687–696

    Google Scholar 

  6. Dooms D, Degrande G, De Roeck G, Reynders E (2006) Finite element modelling of a silo based on experimental modal analysis. Eng Struct 28(4):532–542

    Google Scholar 

  7. Magalhaẽs F, Caetano E, Cunha Á (2008) Operational modal analysis and finite element model correlation of the Braga stadium suspended roof. Eng Struct 30(6):1688–1698

    Google Scholar 

  8. Gentile C, Saisi A (2007) Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr Build Mater 21(6):1311–1321

    Google Scholar 

  9. Brincker R, Andersen P, Martinez ME, Tallavó F (1996) Modal analysis of an offshore platform using two different ARMA approaches. In: Proceedings of the 14th international modal analysis conference, Dearborn, MI, February, pp 1197–1203

    Google Scholar 

  10. Brownjohn J (2005) Long-term monitoring of dynamic response of a tall building for performance evaluation and loading characterisation. In: Proceedings of the 1st international operational modal analysis conference, Copenhagen, Denmark, April, pp 143–154

    Google Scholar 

  11. Peeters B, Van der Auweraer H, Vanhollebeke F, Guillaume P (2007) Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock Vib 14(4):283–303

    Google Scholar 

  12. Brownjohn JMW, Carden EP, Goddard CR, Oudin G (2010) Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney. J Wind Eng Ind Aerodyn 98(3):169–179

    Google Scholar 

  13. Darbre GR, de Smet CAM, Kraemer C (2000) Natural frequencies measured from ambient vibration response of the arch dam of Mauvoisin. Earthquake Eng Struct Dyn 29(5):577–586

    Google Scholar 

  14. Parloo E, Verboven P, Guillaume P, Van Overmeire M (2002) Sensitivity-based operational mode shape normalization. Mech Syst Signal Process 16(5):757–767

    Google Scholar 

  15. Parloo E, Cauberghe B, Benedettini F, Alaggio R, Guillaume P (2005) Sensitivity-based operational mode shape normalization: application to a bridge. Mech Syst Signal Process 19(1):43–55

    Google Scholar 

  16. Kennedy C, Pancu C (1947) Use of vectors in vibration measurement and analysis. J Aeronaut Sci 14(11):603–625

    Google Scholar 

  17. Bishop RED, Gladwell GML (1963) An investigation into the theory of resonance testing. Philos Trans R Soc Lond 255A(1055):241–280

    Google Scholar 

  18. Heylen W, Lammens S, Sas P (1997) Modal analysis theory and testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

  19. Maia NMM, Silva JMM (1997) Theoretical and experimental modal analysis. Research Studies Press, Taunton

    Google Scholar 

  20. Ewins DJ (2000) Modal testing, 2nd edn. Research Studies Press, Baldock

    Google Scholar 

  21. Guillaume P, De Troyer T, Devriendt C, De Sitter G (2006) OMAX—a combined experimental-operational modal analysis approach. In: Sas P, De Munck M (eds) Proceedings of ISMA2006 international conference on noise and vibration engineering, Leuven, Belgium, September, pp 2985–2996

    Google Scholar 

  22. Juang J-N, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627

    MATH  Google Scholar 

  23. Peeters B, De Roeck G (2001) Stochastic system identification for operational modal analysis: a review. ASME J Dyn Syst Meas Control 123(4):659–667

    Google Scholar 

  24. Åström KJ, Bohlin T (1965) Numerical identification of linear dynamic systems from normal operating records. In: IFAC conference on self-adaptive systems, Teddington, UK

    Google Scholar 

  25. Åström KJ, Eykhoff P (1971) System identification: a survey. Automatica 7(2):123–162

    MATH  Google Scholar 

  26. Ljung L (1987) System identification: theory for the user, 1st edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  27. Schoukens J, Pintelon R (1991) Identification of linear systems: a practical guide to accurate modeling. Pergamon Press, Oxford

    Google Scholar 

  28. Ho B, Kalman R (1966) Effective reconstruction of linear state-variable models from input/output functions. Regelungstechnik 14(12):545–548

    MATH  Google Scholar 

  29. Akaike H (1974) Stochastic theory of minimal realization. IEEE Trans Autom Control 19(6):667–674

    MathSciNet  MATH  Google Scholar 

  30. Akaike H (1975) Markovian representation of stochastic processes by canonical variables. SIAM J Control 13(1):162–173

    MathSciNet  MATH  Google Scholar 

  31. Söderström T, Stoica P (1983) Instrumental variable methods for system identification. Springer, New York

    MATH  Google Scholar 

  32. Viberg M (1995) Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12):1835–1851

    MathSciNet  MATH  Google Scholar 

  33. Van Overschee P, De Moor B (1996) Subspace identification for linear systems. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  34. Bauer D (2005) Asymptotic properties of subspace estimators. Automatica 41(3):359–376

    MathSciNet  MATH  Google Scholar 

  35. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  36. Pintelon R, Schoukens J (2001) System identification. IEEE Press, New York

    Google Scholar 

  37. Gevers M (2006) A personal view of the development of system identification. IEEE Control Syst Mag 26(6):93–105

    Google Scholar 

  38. Goethals I, Pelckmans J, Suykens JAK, De Moor B (2005) Subspace identification of Hammerstein systems using least squares support vector machines. IEEE Trans Autom Control 50(10):1509–1519

    Google Scholar 

  39. Schoukens J, Pintelon R, Enqvist M (2008) Study of the LTI relations between the outputs of two coupled Wiener systems and its application to the generation of initial estimates for Wiener-Hammerstein systems. Automatica 44(7):1654–1665

    MathSciNet  MATH  Google Scholar 

  40. Schoukens J, Pintelon R, Dobrowiecki T, Rolain Y (2005) Identification of linear systems with nonlinear distortions. Automatica 41(3):491–504

    MathSciNet  MATH  Google Scholar 

  41. Thomson W (1876) Mechanical integration of the general linear differential equation of any order with variable coefficients. Proc R Soc Lond 24:271–275

    MATH  Google Scholar 

  42. Kailath T (1980) Linear systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  43. Kalman R (1963) Mathematical description of linear dynamical systems. SIAM J Control 1(2):152–192

    MathSciNet  MATH  Google Scholar 

  44. Polderman JW, Willems JC (1998) Introduction to mathematical systems theory. Springer, New York

    Google Scholar 

  45. Willems JC (2007) In control, almost from the beginning until the day after tomorrow. Eur J Control 13(1):71–81

    MathSciNet  Google Scholar 

  46. Franklin GF, Powell JD, Workman M (1998) Digital control of dynamic systems. Addison-Wesley, Menlo Park

    Google Scholar 

  47. Fourier JBJ (1822) Théorie analytique de la chaleur. Firmin Didot, Paris

    Google Scholar 

  48. Jury EI (1964) Theory and application of the z-transform method. Wiley, New York

    Google Scholar 

  49. Briggs WL, Henson VE (1995) The DFT. SIAM, Philadelphia

    MATH  Google Scholar 

  50. Gauss CF (1866) Theoria interpolationis methodo nova tractata. In: Carl Friedrich Gauss Werke, vol 3. Königlichen Gesellschaft der Wissenschaften, Göttingen

    Google Scholar 

  51. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19(90):297–301

    MathSciNet  MATH  Google Scholar 

  52. Bathe KJ (1996) Finite element procedures, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  53. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Amsterdam

    MATH  Google Scholar 

  54. Meirovitch L (1975) Elements of vibration analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  55. Przemieniecki JS (1985) Theory of matrix structural analysis. Dover Publications, New York

    Google Scholar 

  56. Reynders E, De Roeck G, Bakir PG, Sauvage C (2007) Damage identification on the Tilff bridge by vibration monitoring using optical fibre strain sensors. ASCE J Eng Mech 133(2):185–193

    Google Scholar 

  57. Juang J-N (1994) Applied system identification. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  58. Reynders E (2009) System identification and modal analysis in structural mechanics. PhD thesis, Faculty of Engineering, K.U.Leuven

  59. Gilbert EG (1963) Controllability and observability in multivariable control systems. SIAM J Control 1(2):128–151

    Google Scholar 

  60. Pintelon R, Schoukens J, Vandersteen G (1997) Frequency domain system identification using arbitrary signals. IEEE Trans Autom Control 42(12):1717–1720

    MathSciNet  MATH  Google Scholar 

  61. Pintelon R, Schoukens J, Guillaume P (2006) Box-Jenkins identification revisited—part III: Multivariable systems. Automatica 43(5):868–875

    MathSciNet  Google Scholar 

  62. Cauberghe B (2004) Applied frequency-domain system identification in the field of experimental and operational modal analysis. PhD thesis, Vrije Universiteit Brussel

  63. Abed-Meraim K, Qiu W, Hua Y (1997) Blind system identification. Proc IEEE 85(8):1310–1322

    Google Scholar 

  64. Pope KJ, Bogner RE (1996) Blind signal separation II. Linear, convolutive combinations. Digit Signal Process 6(1):17–28

    Google Scholar 

  65. Hanson D, Randall RB, Antoni J, Thompson DJ, Waters TP, Ford RAJ (2007) Cyclostationarity and the cepstrum for operational modal analysis of mimo systems—Part I: Modal parameter identification. Mech Syst Signal Process 21(6):2441–2458

    Google Scholar 

  66. Durbin PA, Petterson Reif BA (2001) Statistical theory and modeling for turbulent flows. Wiley, New York

    MATH  Google Scholar 

  67. Durbin PA, Medic G (2007) Fluid dynamics with a computational perspective. Cambridge University Press, New York

    MATH  Google Scholar 

  68. Clough RW, Penzien J (1995) Dynamics of structures, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  69. Braun H, Hellenbroich T (1991) Messergebnisse von Strassenunebenheiten. VDI Ber 877:47–80

    Google Scholar 

  70. ORE (1971) Question C116: Wechselwirkung zwischen Fahrzeugen und gleis, Bericht Nr. 1: Spektrale Dichte der Unregelmässigkeiten in der Gleislage. Technical report, Office for Research and Experiments of the International Union of Railways, Utrecht, NL

  71. Dougherty ER (1999) Random processes for image and signal processing. SPIE Press, Bellingham

    MATH  Google Scholar 

  72. Åström KJ (1970) Introduction to stochastic control theory. Academic Press, New York

    MATH  Google Scholar 

  73. Pintelon R, Schoukens J, Guillaume P (2008) Continuous-time noise modeling from sampled data. IEEE Trans Instrum Meas 55(6):2253–2258

    Google Scholar 

  74. Dyrbye C, Hansen SO (1997) Wind loads on structures. Wiley, New York

    Google Scholar 

  75. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589

    Google Scholar 

  76. Deodatis G (1996) Simulation of ergodic multivariate stochastic processes. ASCE J Eng Mech 122(8):778–787

    Google Scholar 

  77. Lourens E, Lombaert G, De Roeck G, Degrande G (2008) Reconstructing time-varying wind loads from vibration responses. In: Proceedings of ISMA2008 international conference on noise and vibration engineering, Leuven, September, pp 639–647

    Google Scholar 

  78. European Committee for Standardization (1995) ENV1991-2-4:1995 Eurocode 1: Basis of design and actions on structures—Part 2-4: Actions on structures—Wind actions

  79. Pintelon R, Peeters B, Guillaume P (2008) Continuous-time operational modal analysis in the presence of harmonic disturbances. Mech Syst Signal Process 22(5):1017–1035

    Google Scholar 

  80. Pintelon R, Peeters B, Guillaume P (2010) Continuous-time operational modal analysis in the presence of harmonic disturbances—the multivariate case. Mech Syst Signal Process 24(1):90–105

    Google Scholar 

  81. Mohanty P, Rixen DJ (2004) Operational modal analysis in the presence of harmonic excitation. J Sound Vib 270(1–2):93–109

    Google Scholar 

  82. Mohanty P, Rixen DJ (2006) Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech Syst Signal Process 20(1):114–130

    Google Scholar 

  83. Hansen MH, Thomsen K, Fuglsang P (2006) Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments. Wind Energy 9(1–2):179–191

    Google Scholar 

  84. Moore SM, Lai JCS, Shankar K (2007) ARMAX modal parameter identification in the presence of unmeasured excitation—I: theoretical background. Mech Syst Signal Process 21(4):1601–1615

    Google Scholar 

  85. Moore SM, Lai JCS, Shankar K (2007) ARMAX modal parameter identification in the presence of unmeasured excitation—II: numerical and experimental verification. Mech Syst Signal Process 21(4):1616–1641

    Google Scholar 

  86. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113

    Google Scholar 

  87. Wambacq P, Mannaert H (1998) Handboek Signaalverwerking. ACCO, Leuven

    Google Scholar 

  88. Wiener N (1930) Generalized harmonic analysis. Acta Math 55(1):117–258

    MathSciNet  MATH  Google Scholar 

  89. Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82D:35–45

    Google Scholar 

  90. Reynders E, De Roeck G (2008) Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech Syst Signal Process 22(3):617–637

    Google Scholar 

  91. Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  92. Box GEP, Jenkins GM (1994) Time series analysis: forecasting and control, 3rd edn. Holden–Day, San Francisco

    MATH  Google Scholar 

  93. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  94. Chopra AK (2004) Dynamics of structures, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  95. Peeters B (2000) System identification and damage detection in civil engineering. PhD thesis, Department of Civil Engineering, K.U.Leuven

  96. Betti E (1872) Teoria della elasticita’. Nuovo Cimento 7–8(1):69–97

    Google Scholar 

  97. Strutt JW (1871–1873) Some general theorems relating to vibrations. Proc Lond Math Soc 4(1):357–368

    Google Scholar 

  98. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions, 9th edn. Dover Publications, New York

    Google Scholar 

  99. Pintelon R, Guillaume P, Schoukens J (2007) Uncertainty calculation in (operational) modal analysis. Mech Syst Signal Process 21(6):2359–2373

    Google Scholar 

  100. Verboven P (2002) Frequency-domain system identification for modal analysis. PhD thesis, Vrije Universiteit Brussel

  101. Pintelon R, Kollár I (2005) On the frequency scaling in continuous-time modeling. IEEE Trans Autom Control 54(1):318–321

    Google Scholar 

  102. Van der Auweraer H, Leuridan J (1987) Multiple input orthogonal polynomial parameter estimation. Mech Syst Signal Process 1(3):259–272

    Google Scholar 

  103. Bultheel A, Van Barel M, Rolain Y, Pintelon R (2005) Numerically robust transfer function modeling from noisy frequency domain data. IEEE Trans Autom Control 50(11):1835–1839

    Google Scholar 

  104. Pintelon R, Rolain Y, Bultheel A, Van Barel M (2002) Numerically robust frequency domain identification of multivariable systems. In: Proceedings of the ISMA2002 international conference on noise and vibration engineering, Leuven, Belgium, September, pp 1315–1322

    Google Scholar 

  105. Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  106. Gauss CF (1809) Theoria motus corporum coelestium. F. Perthes & I.H. Besser, Hamburg

    Google Scholar 

  107. Yule GU (1927) On a method for investigating periodicities in disturbed series with special reference to Wofer’s subspot numbers. Philos Trans R Soc Lond 226A:267–298

    Google Scholar 

  108. Walker G (1931) On periodicity in series of related terms. Proc R Soc Lond 131A:518–532

    Google Scholar 

  109. Vold H, Kundrat J, Rocklin GT, Russel R (1982) A multi-input modal estimation algorithm for mini-computers. SAE technical paper series, 820194

  110. Vold H, Kundrat J, Rocklin GT, Russel R (1982) The numerical implementation of a multi-input modal parameter estimation method for mini-computers. In: Proceedings of the 1st international modal analysis conference, Orlando, FL, November, pp 542–548

    Google Scholar 

  111. Guillaume P, Verboven P, Vanlanduit S, Van der Auweraer H, Peeters B (2003) A poly-reference implementation of the least-squares complex frequency domain-estimator. In: Proceedings of the 21st international modal analysis conference, Kissimmee, FL, February

    Google Scholar 

  112. Ben-Israel A, Greville T (1974) Generalized inverses. Wiley, New York

    MATH  Google Scholar 

  113. Trefethen LN, Bau D III (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  114. Zeiger HP, McEwen AJ (1974) Approximate linear realizations of given dimension via Ho’s algorithm. IEEE Trans Autom Control 19:153

    MATH  Google Scholar 

  115. Kung SY (1978) A new identification and model reduction algorithm via singular value decomposition. In: Proceedings of the 12th Asilomar conference on circuits, systems and computers, Pacific Grove, CA, pp 705–714

    Google Scholar 

  116. Beltrami E (1873) Sulle funzioni bilineari. G Mat 11:98–106

    Google Scholar 

  117. Jordan C (1874) Mémoire sur les formes bilinéaires. J Math Pures Appl 19:35–54

    Google Scholar 

  118. Juang J-N, Cooper JE, Wright JR (1988) An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification. Control Theory Adv Technol 4(1):5–14

    MathSciNet  Google Scholar 

  119. Moore B (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control 26(1):17–32

    MATH  Google Scholar 

  120. Aoki M (1987) State space modelling of time series. Springer, Berlin

    Google Scholar 

  121. Arun KS, Kung SY (1990) Balanced approximation of stochastic systems. SIAM J Matrix Anal Appl 11:42–68

    MathSciNet  MATH  Google Scholar 

  122. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878

    Google Scholar 

  123. Reynders E, Pintelon R, De Roeck G (2008) Consistent impulse response estimation and system realization from noisy data. IEEE Trans Signal Process 56(7):2696–2705

    MathSciNet  Google Scholar 

  124. Goethals I (2005) Subspace identification for linear, Hammerstein and Hammerstein-Wiener systems. PhD thesis, Katholieke Universiteit Leuven

  125. Verhaegen M, Dewilde P (1992) Subspace model identification, Part 1. The output-error state-space model identification class of algorithms. Int J Control 56(5):1187–1210

    MathSciNet  MATH  Google Scholar 

  126. Verhaegen M, Dewilde P (1992) Subspace model identification, Part 2. Analysis of the elementary output-error state-space model identification algorithm. Int J Control 56(5):1211–1241

    MathSciNet  MATH  Google Scholar 

  127. Verhaegen M (1993) Subspace model identification, Part 3. Analysis of the ordinary output-error state-space model identification algorithm. Int J Control 58(3):555–586

    MathSciNet  MATH  Google Scholar 

  128. Van Overschee P, De Moor B (1994) N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1):75–93

    MathSciNet  MATH  Google Scholar 

  129. Verhaegen M (1994) Identification of the deterministic part of MIMO state space models given in innovations from input-output data. Automatica 30(1):61–74

    MathSciNet  MATH  Google Scholar 

  130. Larimore WE (1990) Canonical variate analysis in identification, filtering and adaptive control. In: Proceedings of the 29th conference on decision and control, Honolulu, HI, December, pp 596–604

    Google Scholar 

  131. Van Overschee P, De Moor B (1994) A unifying theorem for three subspace system identification algorithms. In: American control conference, Baltimore, MD, June–July, pp 1645–1649

    Google Scholar 

  132. Fisher RA (1912) On an absolute criterion for fitting frequency curves. Messenger Math 41:155–160

    Google Scholar 

  133. Guillaume P (1992) Identification of multi-input multi-output systems using frequency-domain models. PhD thesis, Vrije Universiteit Brussel

  134. Guillaume P, Hermans L, Van der Auweraer H (1999) Maximum likelihood identification of modal parameters from operational data. In: Proceedings of the 17th international modal analysis conference, Kissimmee, FL, February, pp 1887–1893

    Google Scholar 

  135. Pintelon R, Schoukens J (2006) Box-Jenkins identification revisited—part I: Theory. Automatica 42(1):63–75

    MathSciNet  MATH  Google Scholar 

  136. Pintelon R, Rolain Y, Schoukens J (2006) Box-Jenkins identification revisited—part II: Applications. Automatica 42(1):77–84

    MathSciNet  MATH  Google Scholar 

  137. McKelvey T, Ljung L (1997) Frequency domain maximum likelihood identification. In: Proceedings of the 11th IFAC symposium on system identification SYSID, Kitakyushu, Japan, July, pp 1741–1746

    Google Scholar 

  138. Cramér H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    MATH  Google Scholar 

  139. Rao CR (1992) Information and the accuracy attainable in the estimation of statistical parameters. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics, vol I. Springer, Berlin, pp 235–247

    Google Scholar 

  140. Phan MQ, Horta LG, Juang JN, Longman RW (1992) Identification of linear systems by an asymptotically stable observer. Report NASA TP-3164, National Aeronautics and Space Administration, Hampton, VA

  141. Markovsky I, Willems J, Rapisarda P, De Moor B (2005) Algorithms for deterministic balanced subspace identification. Automatica 41(5):755–766

    MathSciNet  MATH  Google Scholar 

  142. Willems J, Rapisarda P, Markovsky I, De Moor B (2005) A note on persistency of excitation. Syst Control Lett 54(4):325–329

    MATH  Google Scholar 

  143. Chiuso A, Picci G (2004) Subspace identification by data orthogonalization and model decoupling. Automatica 40(10):1689–1703

    MathSciNet  MATH  Google Scholar 

  144. Verboven P, Parloo E, Cauberghe B, Guillaume P (2005) Improved modal parameter estimation for lowly damped systems using non-parametric exponential windowing techniques. Mech Syst Signal Process 19(4):675–699

    Google Scholar 

  145. Peeters B, Van der Auweraer H, Guillaume P, Leuridan J (2004) The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib 11(3–4):395–409

    Google Scholar 

  146. Brewer JW (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuits Syst 25(9):772–781

    MathSciNet  MATH  Google Scholar 

  147. Graham A (1981) Kronecker products and matrix calculus with applications. Ellis Horwood, Chichester

    MATH  Google Scholar 

  148. De Troyer T, Guillaume P, Pintelon R, Vanlanduit S (2009) Fast calculation of confidence intervals on parameter estimates of least-squares frequency-domain estimators. Mech Syst Signal Process 23(2):261–273

    Google Scholar 

  149. Kumaresan R, Tufts DW (1982) Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans Acoust Speech Signal Process 30(6):833–840

    Google Scholar 

  150. Kumaresan R (1983) On the zeros of the linear prediction-error filter for deterministic signals. IEEE Trans Acoust Speech Signal Process 31(1):217–220

    MathSciNet  Google Scholar 

  151. Cauberghe B, Guillaume P, Verboven P, Vanlanduit S, Parloo E (2005) On the influence of the parameter constraint on the stability of the poles and the discrimination capabilities of the stabilisation diagrams. Mech Syst Signal Process 19(5):989–1014

    Google Scholar 

  152. Reynders E, De Roeck G (2008) Estimation of impulse responses: a novel method and its use in experimental modal analysis. In: Proceedings of IMAC 26, the international modal analysis conference, Orlando, FL, February

    Google Scholar 

  153. Ibrahim SR, Mikulcik EC (1977) A method from the direct identification of vibration parameters from the free response. Shock Vib Bull 47(4):183–198

    Google Scholar 

  154. Reynders E, Pintelon R, De Roeck G (2008) Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech Syst Signal Process 22(4):948–969

    Google Scholar 

  155. Brillinger DR (1981) Time series: data analysis and theory, 2nd edn. Holden-Day, San Francisco

    MATH  Google Scholar 

  156. Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  157. Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover Publications, New York

    Google Scholar 

  158. Bendat JS, Piersol AG (1993) Engineering applications of correlation and spectral analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  159. Johnson PD, Long DG (1999) The probability density of spectral estimates based on modified periodogram averages. IEEE Trans Signal Process 47(5):1255–1261

    Google Scholar 

  160. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    MathSciNet  Google Scholar 

  161. Carden EP, Mita A (2011) Challenges in developing confidence intervals on modal parameters estimated for large civil infrastructure with stochastic subspace identification. Struct Control Health Monit 18(1):53–78

    Google Scholar 

  162. Chiuso A, Picci G (2004) The asymptotic variance of subspace estimates. J Econom 118(1–2):257–291

    MathSciNet  MATH  Google Scholar 

  163. Van Overschee P, De Moor B (1991) Subspace algorithm for the stochastic identification problem. In: Proceedings of the 30th IEEE conference on decision and control, Brighton, UK, December, pp 1321–1326

    Google Scholar 

  164. Goethals I, Van Gestel T, Suykens J, Van Dooren P (2003) Identification of positive real models in subspace identification by using regularization. IEEE Trans Autom Control 48(10):1843–1847

    Google Scholar 

  165. Bauer D, Deistler M, Scherrer W (1999) Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs. Automatica 35(7):1243–1254

    MathSciNet  MATH  Google Scholar 

  166. Jansson M (2000) Asymptotic variance analysis of subspace identification methods. In: Proceedings of the 12th IFAC symposium on system identification SYSID 2000, Santa Barbara, CA, June, pp 705–714

    Google Scholar 

  167. Bauer D, Jansson M (2000) Analysis of the asymptotic properties of the MOESP type of subspace algorithms. Automatica 36(4):497–509

    MathSciNet  MATH  Google Scholar 

  168. Bauer D, Ljung L (2002) Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms. Automatica 38(5):763–773

    MathSciNet  MATH  Google Scholar 

  169. Bauer D, Deistler M, Scherrer W (2000) On the impact of weighting matrices in subspace algorithms. In: Proceedings of the 12th IFAC symposium on system identification SYSID 2000, Santa Barbara, CA, June

    Google Scholar 

  170. Bauer D (2005) Comparing the CCA subspace method to pseudo maximum likelihood methods in the case of no exogenous inputs. J Time Ser Anal 26(5):631–668

    MathSciNet  MATH  Google Scholar 

  171. Peeters B, Van der Auweraer H (2005) PolyMAX: a revolution in operational modal analysis. In: Brinker R, Møller N (eds) Proceedings of the 1st international operational modal analysis conference, Copenhagen, Denmark, April, pp 41–52

    Google Scholar 

  172. Andersen P (1997) Identification of civil engineering structures using vector ARMA models. PhD thesis, Aalborg University

  173. Fassois SD (2001) MIMO LMS-ARMAX identification of vibrating structures—part I: the method. Mech Syst Signal Process 15(4):723–735

    Google Scholar 

  174. Felber A (1993) Development of a hybrid bridge evaluation system. PhD thesis, University of British Columbia, Vancouver, Canada

  175. Shih CY, Tsuei YG, Allemang RJ, Brown D (1988) Complex mode indicator function and its applications to spatial domain parameter estimation. Mech Syst Signal Process 2(4):367–377

    MATH  Google Scholar 

  176. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18th international modal analysis conference, San Antonio, TX, February, pp 625–630

    Google Scholar 

  177. Guillaume P, Schoukens J, Pintelon R (1989) Sensitivity of roots to errors in the coefficient of polynomials obtained by frequency-domain estimation methods. IEEE Trans Instrum Meas 38(6):1050–1056

    Google Scholar 

  178. Akaike H (1969) Fitting autoregressive models for prediction. Ann Inst Stat Math 21(1):243–347

    MathSciNet  MATH  Google Scholar 

  179. Akaike H (1981) Modern development of statistical methods. In: Eykhoff P (ed) Trends and progress in system identification. Pergamon Press, Elmsford

    Google Scholar 

  180. Rissanen J (1978) Modelling by shortest data description. Automatica 10(5):175–182

    MathSciNet  Google Scholar 

  181. Van der Auweraer H, Peeters B (2004) Discriminating physical poles from mathematical poles in high order systems: use and automation of the stabilization diagram. In: Proceedings of the 2004 IEEE instrumentation and measurement technology conference, Como, Italy, May, pp 2193–2198

    Google Scholar 

  182. Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference, Orlando, FL, pp 110–116

    Google Scholar 

  183. Reynders E, Houbrechts J, De Roeck G (2011) Automated interpretation of stabilization diagrams. In: Proulx T (ed) Modal analysis topics, Jacksonville, FL, February. Proceedings of the 29th international modal analysis conference series, vol 3. Springer, Berlin, pp 189–201

    Google Scholar 

  184. Deraemaeker A, Reynders E, De Roeck G, Kullaa J (2008) Vibration based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process 22(1):34–56

    Google Scholar 

  185. Goethals I, De Moor B (2002) Model reduction and energy analysis as a tool to detect spurious modes. In: Sas P, van Hal B (eds) Proceedings of ISMA2002 international conference on noise and vibration engineering, Leuven, Belgium, September, pp 1307–1314

    Google Scholar 

  186. Söderström T (1975) Test of pole-zero cancellation in estimated models. Automatica 11(5):537–539

    MATH  Google Scholar 

  187. Verboven P, Parloo E, Guillaume P, Van Overmeire M (2002) Autonomous structural health monitoring—part 1: modal parameter estimation and tracking. Mech Syst Signal Process 16(4):637–657

    Google Scholar 

  188. Pappa RS, Elliott KB, Schenk A (1992) A consistent-mode indicator for the eigensystem realization algorithm. Report NASA TM-107607, National Aeronautics and Space Administration, April

  189. Ibrahim SR (1978) Modal confidence factor in vibration testing. IAAA J Spacecr Rockets 15(5):313–316

    Google Scholar 

  190. Lembregts F (1988) Frequency domain identification techniques for experimental multiple input modal analysis. PhD thesis, Katholieke Universiteit Leuven

Download references

Acknowledgements

I would like to thank G. De Roeck, G. Degrande, W. Heylen and B. De Moor from K.U.Leuven, R. Pintelon and P. Guillaume from Vrije Universiteit Brussel, Á. Cunha and F. Magalhães from University of Porto, and B. Peeters from LMS International for helpful discussions.

This research was supported by the Research Foundation—Flanders (FWO), Belgium, under Research Project G.0343.04 and a Postdoctoral Research Fellowship.

The present paper quotes text passages, figures and tables from E. Reynders, System identification and modal analysis in structural mechanics, PhD thesis, Faculty of Engineering, K.U.Leuven, 2009. This material is reproduced here with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Reynders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynders, E. System Identification Methods for (Operational) Modal Analysis: Review and Comparison. Arch Computat Methods Eng 19, 51–124 (2012). https://doi.org/10.1007/s11831-012-9069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-012-9069-x

Navigation