Skip to main content
Log in

Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The smoothed finite element methods (S-FEM) are a family of methods formulated through carefully designed combinations of the standard FEM and some of the techniques from the meshfree methods. Studies have proven that S-FEM models behave softer than the FEM counterparts using the same mesh structure, often produce more accurate solutions, higher convergence rates, and much less sensitivity to mesh distortion. They work well with triangular or tetrahedral mesh that can be automatically generated, and hence are ideal for automated computations and adaptive analyses. Some S-FEM models can also produce upper bound solution for force driving problems, which is an excellent unique complementary feature to FEM. Because of these attractive properties, S-FEM has been applied to numerous problems in the disciplines of material mechanics, biomechanics, fracture mechanics, plates and shells, dynamics, acoustics, heat transfer and fluid–structure interactions. This paper reviews the developments and applications of the S-FEM in the past ten years. We hope this review can shed light on further theoretical development of S-FEM and more complex practical applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Some basic S-FEM source code can be found at www.ase.uc.edu/~liugr.

References

  1. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, West Sussex

    MATH  Google Scholar 

  3. Liu GR, Quek SS (2013) The finite element method: a practical course, 2nd edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  4. Turner MJ (1959) The direct stiffness method of structural analysis, structural and materials panel paper. In: AGARD meeting—1959, Aachen, Germany

  5. Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Liu GR, Zhang GY (2013) The smoothed point interpolation methods—G space theory and weakened weak forms. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  7. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  8. Pian THH, Wu CC (2006) Hybrid and incompatible finite element methods. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Liu GR (2016) An overview on meshfree methods: for computational solid mechanics. Int J Comput Methods 13(05):1630001

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    Article  MATH  Google Scholar 

  11. Liu GR, Dai KY, Nguyen-Thoi T (2007) A smoothed finite element method for mechanics problems. Comput Mech 39:859–877

    Article  MATH  Google Scholar 

  12. Dai KY, Liu GR (2007) Smoothed finite element method, CE006. http://hdl.handle.net/1721.1/35825

  13. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8):902–930

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3–5):803–820

    Article  Google Scholar 

  15. Dai KY, Liu GR, Nguyen-Thoi T (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43:847–860

    Article  MathSciNet  Google Scholar 

  16. Nguyen-Thoi T, Liu GR, Dai KY, Lam KY (2007) Selective smoothed finite element method. Tsinghua Sci Technol 12(5):497–508

    Article  MathSciNet  Google Scholar 

  17. Liu GR (2008) A generalized Gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5(2):199–236

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197(45–48):3883–3897

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui XY, Liu GR, Li GY, Zhao X, Nguyen TT, Sun GY (2008) A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES: Comput Model Eng Sci 28:109–125

    MathSciNet  MATH  Google Scholar 

  20. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87:14–26

    Article  Google Scholar 

  21. He ZC, Liu GR, Zhong ZH, Wu SC, Zhang GY, Cheng AG (2009) An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems. Comput Methods Appl Mech Eng 199:20–33

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320:1100–1130

    Article  Google Scholar 

  23. Cui XY, Liu GR, Li GY, Zhang GY, Sun GY (2009) Analysis of elastic–plastic problems using edge-based smoothed finite element method. Int J Press Vessel Pip 86:711–718

    Article  Google Scholar 

  24. Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh. Comput Mech 45(1):23–44

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009) A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes. J Comput Phys 228:4055–4087

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu GR, Nguyen-Thoi T, Lam KY (2009) A novel FEM by scaling the gradient of strains with factor alpha (αFEM). Comput Mech 43(3):369–391

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324–353

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Comput Methods Appl Mech Eng 198:3479–3498

    Article  MATH  Google Scholar 

  29. He ZC, Liu GR, Zhong ZH, Cui XY, Zhang GY, Cheng AG (2010) A coupled edge-/face-based smoothed finite element method for structural acoustic problems. Appl Acoust 71:955–964

    Article  Google Scholar 

  30. Zhang ZQ, Yao J, Liu GR (2011) An immersed smoothed finite element method for fluid–structure interaction problems. Int J Comput Methods 8(04):747–757

    Article  MathSciNet  MATH  Google Scholar 

  31. Vu-Bac N, Nguyen-Xuan H, Chen L, Bordas S, Kerfriden P, Simpson RN, Liu GR, Rabczuk T (2011) A node-based smoothed XFEM for fracture mechanics. CMES: Comput Model Eng Sci 73:331–356

    MathSciNet  MATH  Google Scholar 

  32. Chen L, Rabczuk T, Bordas SPA, Liu GR, Zeng KY, Kerfriden P (2012) Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput Methods Appl Mech Eng 209:250–265

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguyen-Xuan H, Liu GR (2013) An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems. Comput Struct 128:14–30

    Article  Google Scholar 

  34. Zeng W, Liu GR, Kitamura Y, Nguyen-Xuan H (2013) A three-dimensional ES-FEM for fracture mechanics problems in elastic solids. Eng Fract Mech 114:127–150

    Article  Google Scholar 

  35. Jiang C, Zhang Z-Q, Liu GR, Han X, Zeng W (2015) An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Eng Anal Bound Elem 59:62–77

    Article  MathSciNet  Google Scholar 

  36. Zeng W, Liu GR, Li D, Dong XW (2016) A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling. Comput Struct 162:48–67

    Article  Google Scholar 

  37. Liu GR (2009) On G space theory. Int J Comput Methods 06(02):257–289

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). Int J Numer Methods Eng 77:1863–1869

    Article  MATH  Google Scholar 

  39. Liu GR, Zhang GY (2009) A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method. Int J Comput Methods 6(1):147–179

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2009) Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. Int J Comput Methods 6(4):633–666

    Article  MathSciNet  MATH  Google Scholar 

  41. Nguyen-Thoi T (2009) Development of smoothed finite element method (SFEM). Ph.D. thesis, National University of Singapore

  42. Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates. Int J Numer Methods Eng 84(10):1222–1256

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu GR (2010) A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory. Int J Numer Methods Eng 81:1093–1126

    MATH  Google Scholar 

  44. Liu GR (2010) A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part II applications to solid mechanics problems. Int J Numer Methods Eng 81:1127–1156

    MATH  Google Scholar 

  45. Liu GR, Nguyen-Thoi T (2010) Smoothed finite element methods. CRC Press, Boca Raton

    Book  Google Scholar 

  46. Hung N-X, Bordas SPA, Hung N-D (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74(2):175–208

    Article  MathSciNet  MATH  Google Scholar 

  47. Hung N-X, Bordas SPA, Hung N-D (2009) Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Commun Numer Methods Eng 25(1):19–34

    Article  MathSciNet  MATH  Google Scholar 

  48. Bordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81(5):660–670

    MathSciNet  MATH  Google Scholar 

  49. Bordas SPA, Rabczuk T, Hung N-X, Nguyen VP, Natarajan S, Bog T, Quan DM, Hiep NV (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24):1419–1443

    Article  Google Scholar 

  50. Nguyen-Xuan H, Nguyen HV, Bordas S, Rabczuk T, Duflot M (2012) A cell-based smoothed finite element method for three dimensional solid structures. KSCE J Civ Eng 16(7):1230–1242

    Article  Google Scholar 

  51. Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199:3005–3027

    Article  MathSciNet  MATH  Google Scholar 

  52. He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Liu GR, Li E, Zhou Z (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52(1):221–236

    Article  MathSciNet  MATH  Google Scholar 

  53. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SPA (2010) An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes. J Comput Appl Math 233(9):2112–2135

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2011) A variationally consistent αFEM (VCαFEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements. Int J Numer Methods Eng 85(4):461–497

    Article  MathSciNet  MATH  Google Scholar 

  55. Xiangyang C, Guangyao L, Gang Z, Suzhen W (2010) NS-FEM/ES-FEM for contact problems in metal forming analysis. Int J Mater Form 3(1):887–890

    Article  Google Scholar 

  56. Li Y, Liu GR, Zhang GY (2011) An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements. Finite Elem Anal Des 47(3):256–275

    Article  MathSciNet  Google Scholar 

  57. Xu X, Gu YT, Liu GR (2013) A hybrid smoothed finite element method (H-SFEM) to solid mechanics problems. Int J Comput Methods 10(01):1340011

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao X, Bordas SPA, Qu J (2013) A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities. Comput Mech 52:1417–1428

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu F, Liu GR, Li GY, He ZC (2014) A new hybrid smoothed FEM for static and free vibration analyses of Reissner-Mindlin Plates. Comput Mech 54(3):1–26

    Article  MATH  Google Scholar 

  60. Cui XY, Chang S, Li GY (2015) A two-step Taylor Galerkin smoothed finite element method for Lagrangian dynamic problem. Int J Comput Methods 12(04):1540004

    Article  MathSciNet  MATH  Google Scholar 

  61. Li E, He ZC, Xu X, Liu GR, Gu YT (2015) A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems. Acta Mech 226(12):4223–4245

    Article  MathSciNet  MATH  Google Scholar 

  62. Lee K, Son Y, Im S (2015) Three-dimensional variable-node elements based upon CS-FEM for elastic–plastic analysis. Comput Struct 158:308–332

    Article  Google Scholar 

  63. Li Y, Zhang GY, Liu GR, Huang YN, Zong Z (2013) A contact analysis approach based on linear complementarity formulation using smoothed finite element methods. Eng Anal Bound Elem 37(10):1244–1258

    Article  MathSciNet  MATH  Google Scholar 

  64. Cui XY, Li GY (2013) Metal forming analysis using the edge-based smoothed finite element method. Finite Elem Anal Des 63:33–41

    Article  MathSciNet  MATH  Google Scholar 

  65. Zeng W, Larsen JM, Liu GR (2015) Smoothing technique based crystal plasticity finite element modeling of crystalline materials. Int J Plast 65:250–268

    Article  Google Scholar 

  66. Nguyen-Xuan H, Rabczuk T, Bordas SPA, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197(2):1184–1203

    Article  MATH  Google Scholar 

  67. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SPA (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198(2):165–177

    Article  MATH  Google Scholar 

  68. Nguyen-Xuan H, Nguyen-Thoi T (2009) A stabilized smoothed finite element method for free vibration analysis of Mindlin–Reissner plates. Commun Numer Methods Eng 25(8):882–906

    Article  MathSciNet  MATH  Google Scholar 

  69. Cui XY, Liu GR, Li GY, Zhang GY, Zheng G (2010) Analysis of plates and shells using an edge-based smoothed finite element method. Comput Mech 45:141–156

    Article  MathSciNet  MATH  Google Scholar 

  70. Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T (2010) An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Methods Appl Mech Eng 199:471–489

    Article  MathSciNet  MATH  Google Scholar 

  71. Nguyen-Xuan H, Rabczuk T, Nguyen-Thanh N, Nguyen-Thoi T, Bordas SPA (2010) A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Mech 46(5):679–701

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang ZQ, Liu GR (2011) An edge-based smoothed finite element method (ES-FEM) using 3-node triangular elements for 3D non-linear analysis of spatial membrane structures. Int J Numer Methods Eng 86(2):135–154

    Article  MathSciNet  MATH  Google Scholar 

  73. Baiz PM, Natarajan S, Bordas SPA, Kerfriden P, Rabczuk T (2011) Linear buckling analysis of cracked plates by SFEM and XFEM. J Mech Mater Struct 6(9–10):1213–1238

    Article  Google Scholar 

  74. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2011) An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem Anal Des 47(5):519–535

    Article  Google Scholar 

  75. Zheng G, Cui X, Li G, Wu S (2011) An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells. Comput Mech 48(1):65–80

    Article  MATH  Google Scholar 

  76. Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T, Bordas S (2011) A cell-based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J Civ Eng 15(2):347–361

    Article  Google Scholar 

  77. Nguyen-Thoi T, Phung-Van P, Nguyen-Xuan H, Thai-Hoang C (2012) A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int J Numer Methods Eng 91(7):705–741

    Article  MathSciNet  MATH  Google Scholar 

  78. Nguyen-Thoi T, Phung-Van P, Luong-Van H, Nguyen-Van H, Nguyen-Xuan H (2013) A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Comput Mech 51(1):65–81

    Article  MathSciNet  MATH  Google Scholar 

  79. Nguyen-Thoi T, Luong-Van H, Phung-Van P, Rabczuk T, Tran-Trung D (2013) Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) method. Int J Compos Mater 3(A):19–27

    Google Scholar 

  80. Nguyen-Thoi T, Phung-Van P, Thai-Hoang C, Nguyen-Xuan H (2013) A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int J Mech Sci 74:32–45

    Article  Google Scholar 

  81. Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, Nguyen-Xuan H, Ngo-Thanh P (2013) Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Comput Struct 125:100–113

    Article  Google Scholar 

  82. Phung-Van P, Nguyen-Thoi T, Le-Dinh T, Nguyen-Xuan H (2013) Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater Struct 22(9):095026

    Article  Google Scholar 

  83. Phung-Van P, Nguyen-Thoi T, Tran LV, Nguyen-Xuan H (2013) A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C 0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates. Comput Mater Sci 79:857–872

    Article  Google Scholar 

  84. Wu CT, Wang HP (2013) An enhanced cell-based smoothed finite element method for the analysis of Reissner–Mindlin plate bending problems involving distorted mesh. Int J Numer Methods Eng 95(4):288–312

    Article  MathSciNet  MATH  Google Scholar 

  85. Luong-Van H, Nguyen-Thoi T, Liu GR, Phung-Van P (2014) A Cell-based smoothed finite element method using mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation. Eng Anal Bound Elem 42:8–19

    Article  MathSciNet  MATH  Google Scholar 

  86. Phung-Van P, Nguyen-Thoi T, Luong-Van H, Lieu-Xuan Q (2014) Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C 0-HSDT. Comput Methods Appl Mech Eng 270:15–36

    Article  MathSciNet  MATH  Google Scholar 

  87. Phung-Van P, Nguyen-Thoi T, Luong-Van H, Thai-Hoang C, Nguyen-Xuan H (2014) A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Comput Methods Appl Mech Eng 272:138–159

    Article  MathSciNet  MATH  Google Scholar 

  88. Phung-Van P, Thai CH, Nguyen-Thoi T, Nguyen-Xuan H (2014) Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Compos B 60:227–238

    Article  Google Scholar 

  89. Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, Nguyen-Hoang S, Nguyen-Xuan H (2014) An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE J Civ Eng 18(4):1072–1082

    Article  MATH  Google Scholar 

  90. Luong-Van H, Nguyen-Thoi T, Liu GR, Phung-Van P (2014) A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Eng Anal Bound Elem 42:8–19

    Article  MathSciNet  MATH  Google Scholar 

  91. Phung-Van P, Nguyen-Thoi T, Dang-Trung H, Nguyen-Minh N (2014) A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C 0-HSDT for analyses of composite plates. Compos Struct 111:553–565

    Article  Google Scholar 

  92. Phung-Van P, Luong-Van H, Nguyen-Thoi T, Nguyen-Xuan H (2014) A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. Int J Numer Methods Eng 98(13):988–1014

    Article  MATH  Google Scholar 

  93. Nguyen-Thoi T, Rabczuk T, Lam-Phat T, Ho-Huu V, Phung-Van P (2014) Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theor Appl Fract Mech 72:150–163

    Article  Google Scholar 

  94. Élie-Dit-Cosaque XJ, Gakwaya A, Naceur H (2015) Smoothed finite element method implemented in a resultant eight-node solid-shell element for geometrical linear analysis. Comput Mech 55(1):105–126

    Article  MathSciNet  MATH  Google Scholar 

  95. Phung-Van P, Nguyen-Thoi T, Bui-Xuan T, Lieu-Xuan Q (2015) A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C 0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Comput Mater Sci 96:549–558

    Article  Google Scholar 

  96. Nguyen-Thoi T, Phung-Van P, Nguyen-Thoi MH, Dang-Trung H (2015) An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming. J Comput Appl Math 281:32–48

    Article  MathSciNet  MATH  Google Scholar 

  97. Nguyen-Thoi T, Nguyen-Thoi MH, Vo-Duy T, Nguyen-Minh N (2015) Development of the cell-based smoothed discrete shear gap plate element (CS-FEM-DSG3) using three-node triangles. Int J Comput Methods 12(04):1540015

    Article  MathSciNet  MATH  Google Scholar 

  98. Le-Anh L, Nguyen-Thoi T, Ho-Huu V, Dang-Trung H, Bui-Xuan T (2015) Static and frequency optimization of folded laminated composite plates using an adjusted differential evolution algorithm and a smoothed triangular plate element. Compos Struct 127:382–394

    Article  Google Scholar 

  99. Nguyen-Minh N, Nguyen-Thoi T, Bui-Xuan T, Vo-Duy T (2015) Static and free vibration analyses of stiffened folded plates using a cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Appl Math Comput 266:212–234

    MathSciNet  Google Scholar 

  100. Nguyen-Thoi MH, Le-Anh L, Ho-Huu V, Dang-Trung H, Nguyen-Thoi T (2015) An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner–Mindlin shells. Front Struct Civ Eng 9(4):341–358

    Article  Google Scholar 

  101. Dang-Trung H, Luong-Van H, Nguyen-Thoi T, Ang KK (2016) Analyses of stiffened plates resting on viscoelastic foundation subjected to a moving load by a cell-based smoothed triangular plate element. Int J Struct Stab Dyn 2016:1750011

    MathSciNet  Google Scholar 

  102. Ho-Huu V, Do-Thi TD, Dang-Trung H, Vo-Duy T, Nguyen-Thoi T (2016) Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method. Compos Struct 146:132–147

    Article  Google Scholar 

  103. Nguyen-Thoi T, Rabczuk T, Ho-Huu V, Le-Anh L, Dang-Trung H, Vo-Duy T (2016) An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates. Int J Comput Methods 2016:1750011

    MathSciNet  Google Scholar 

  104. Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim HG (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32(2):267–284

    Article  Google Scholar 

  105. Cui XY, Liu GR, Li GY (2011) Bending and vibration responses of laminated composite plates using an edge-based smoothing technique. Eng Anal Bound Elem 35(6):818–826

    Article  MathSciNet  MATH  Google Scholar 

  106. Nguyen-Xuan H, Tran LV, Nguyen-Thoi T, Vu-Do HC (2011) Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos Struct 93(11):3019–3039

    Article  Google Scholar 

  107. Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T (2011) An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates. Appl Math Comput 217(17):7324–7348

    MathSciNet  MATH  Google Scholar 

  108. Nguyen-Xuan H, Tran LV, Thai CH, Nguyen-Thoi T (2012) Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin Wall Struct 54:1–18

    Article  Google Scholar 

  109. Hoang CT, Tran VL, Trung DT, Trung NT, Hung NX (2012) Analysis of laminated composite plates using higher-order shear deformation theory and node-based smoothed discrete shear gap method. Appl Math Model 36(11):5657–5677

    Article  MathSciNet  MATH  Google Scholar 

  110. Natarajan S, Ferreira AJM, Bordas SPA, Carrera E, Cinefra M (2013) Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements. Compos Struct 105:75–81

    Article  Google Scholar 

  111. Phan-Dao HH, Nguyen-Xuan H, Thai-Hoang C, Nguyen-Thoi T, Rabczuk T (2013) An edge-based smoothed finite element method for analysis of laminated composite plates. Int J Comput Methods 10(01):1340005

    Article  MathSciNet  MATH  Google Scholar 

  112. Natarajan S, Ferreira AJM, Bordas S, Carrera E, Cinefra M, Zenkour AM (2014) Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math Probl Eng 2014:247932

    Article  MathSciNet  Google Scholar 

  113. Rodrigues JD, Natarajan S, Ferreira AJM, Carrera E, Cinefra M, Bordas SPA (2014) Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Comput Struct 135:83–87

    Article  Google Scholar 

  114. Herath MT, Natarajan S, Prusty BG, John NS (2014) Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers. Compos Struct 109:189–197

    Article  Google Scholar 

  115. Li E, Zhang Z, Chang CC, Liu GR, Li Q (2015) Numerical homogenization for incompressible materials using selective smoothed finite element method. Compos Struct 123:216–232

    Article  Google Scholar 

  116. Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917–938

    MathSciNet  MATH  Google Scholar 

  117. Le CV, Nguyen-Xuan H, Askes H, Bordas S, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12):1651–1674

    Article  MathSciNet  MATH  Google Scholar 

  118. Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N (2012) Computation of limit and shakedown loads using a node-based smoothed finite element method. Int J Numer Methods Eng 90(3):287–310

    Article  MathSciNet  MATH  Google Scholar 

  119. Le CV, Nguyen-Xuan H, Askes H, Rabczuk T, Nguyen-Thoi T (2013) Computation of limit load using edge-based smoothed finite element method and second-order cone programming. Int J Comput Methods 10(01):1340004

    Article  MathSciNet  MATH  Google Scholar 

  120. Nguyen-Xuan H, Rabczuk T (2015) Adaptive selective ES-FEM limit analysis of cracked plane-strain structures. Front Struct Civ Eng 9(4):478–490

    Article  Google Scholar 

  121. Chen L, Liu GR, Nourbakhsh N, Zeng K (2010) A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks. Comput Mech 45(2–3):109–125

    Article  MathSciNet  MATH  Google Scholar 

  122. Liu GR, Chen L, Nguyen-Thoi T, Zeng K, Zhang GY (2010) A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. Int J Numer Methods Eng 83(11):1466–1497

    Article  MathSciNet  MATH  Google Scholar 

  123. Liu GR, Nourbakhshnia N, Chen L, Zhang YW (2010) A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks. Int J Comput Methods 7(01):191–214

    Article  MathSciNet  MATH  Google Scholar 

  124. Liu GR, Nourbakhshnia N, Zhang YW (2011) A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems. Eng Fract Mech 78(6):863–876

    Article  Google Scholar 

  125. Nourbakhshnia N, Liu GR (2011) A quasi-static crack growth simulation based on the singular ES-FEM. Int J Numer Methods Eng 88(5):473–492

    Article  MathSciNet  MATH  Google Scholar 

  126. Chen L, Liu GR, Jiang Y, Zeng K, Zhang J (2011) A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media. Eng Fract Mech 78(1):85–109

    Article  Google Scholar 

  127. Jiang Y, Liu GR, Zhang YW, Chen L, Tay TE (2011) A singular ES-FEM for plastic fracture mechanics. Comput Methods Appl Mech Eng 200(45):2943–2955

    Article  MathSciNet  MATH  Google Scholar 

  128. Chen L, Liu GR, Zeng K, Zhang J (2011) A novel variable power singular element in G space with strain smoothing for bi-material fracture analyses. Eng Anal Bound Elem 35(12):1303–1317

    Article  MATH  Google Scholar 

  129. Chen L, Liu GR, Zeng K (2011) A combined extended and edge-based smoothed finite element method (ES-XFEM) for fracture analysis of 2D elasticity. Int J Comput Methods 8(04):773–786

    Article  MathSciNet  MATH  Google Scholar 

  130. Nourbakhshnia N, Liu GR (2012) Fatigue analysis using the singular ES-FEM. Int J Fatigue 40:105–111

    Article  Google Scholar 

  131. Nguyen-Xuan H, Liu GR, Nourbakhshnia N, Chen L (2012) A novel singular ES-FEM for crack growth simulation. Eng Fract Mech 84:41–66

    Article  Google Scholar 

  132. Liu P, Bui TQ, Zhang C, Yu TT, Liu GR, Golub MV (2012) The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids. Comput Methods Appl Mech Eng 233:68–80

    Article  MathSciNet  MATH  Google Scholar 

  133. Jiang Y, Tay TE, Chen L, Sun XS (2013) An edge-based smoothed XFEM for fracture in composite materials. Int J Fatigue 179(1–2):179–199

    Google Scholar 

  134. Nguyen-Xuan H, Liu GR, Bordas S, Natarajan S, Rabczuk T (2013) An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput Methods Appl Mech Eng 253:252–273

    Article  MathSciNet  MATH  Google Scholar 

  135. Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:978026

    Article  MathSciNet  MATH  Google Scholar 

  136. Liu GR, Chen L, Li M (2014) S-FEM for fracture problems, theory, formulation and application. Int J Comput Methods 11(03):1343003

    Article  MathSciNet  MATH  Google Scholar 

  137. Jiki PN, Agber JU (2014) Damage evaluation in gap tubular truss ‘K’ bridge joints using SFEM. J Constr Steel Res 93:135–142

    Article  Google Scholar 

  138. Jiang Y, Tay TE, Chen L, Zhang YW (2015) Extended finite element method coupled with face-based strain smoothing technique for three-dimensional fracture problems. Int J Numer Methods Eng 102(13):1894–1916

    Article  MathSciNet  MATH  Google Scholar 

  139. Zeng W, Liu GR, Jiang C, Dong XW, Chen HD, Bao Y, Jiang Y (2016) An effective fracture analysis method based on the virtual crack closure-integral technique implemented in CS-FEM. Appl Math Model 40(5):3783–3800

    Article  MathSciNet  Google Scholar 

  140. Chen H, Wang Q, Liu GR, Wang Y, Sun J (2016) Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. Int J Mech Sci 115:123–134

    Article  Google Scholar 

  141. Wu L, Liu P, Shi C, Zhang Z, Bui TQ, Jiao D (2016) Edge-based smoothed extended finite element method for dynamic fracture analysis. Appl Math Model 40(19–20):8564–8579

    Article  MathSciNet  Google Scholar 

  142. Liu GR, Zeng W, Nguyen-Xuan H (2013) Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics. Finite Elem Anal Des 63:51–61

    Article  MathSciNet  MATH  Google Scholar 

  143. Hu XB, Cui XY, Feng H, Li GY (2016) Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Eng Anal Bound Elem 70:40–55

    Article  MathSciNet  Google Scholar 

  144. Zhang ZQ, Liu GR (2010) Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems. Comput Mech 46(2):229–246

    Article  MathSciNet  MATH  Google Scholar 

  145. Zhang ZQ, Liu GR (2010) Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods. Int J Numer Methods Eng 84(2):149–178

    MathSciNet  MATH  Google Scholar 

  146. Nguyen-Thanh N, Thai-Hoang C, Nguyen-Xuan H, Rabczuk T (2010) A smoothed finite element method for the static and free vibration analysis of shells. J Civ Eng Archit 4(9):34

    Google Scholar 

  147. Wang L, Han D, Liu GR, Cui X (2011) Free vibration analysis of double-walled carbon nanotubes using the smoothed finite element method. Int J Comput Methods 8(04):879–890

    Article  MATH  Google Scholar 

  148. He Z, Li G, Zhong Z, Cheng A, Zhang G, Li E (2013) An improved modal analysis for three-dimensional problems using face-based smoothed finite element method. Acta Mech Solida Sin 26(2):140–150

    Article  Google Scholar 

  149. Cui XY, Li GY, Liu GR (2013) An explicit smoothed finite element method (SFEM) for elastic dynamic problems. Int J Comput Methods 10(01):1340002

    Article  MathSciNet  MATH  Google Scholar 

  150. Nguyen-Thoi T, Phung-Van P, Rabczuk T, Nguyen-Xuan H, Le-Van C (2013) Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). Int J Comput Methods 10(01):1340008

    Article  MathSciNet  MATH  Google Scholar 

  151. Feng H, Cui XY, Li GY, Feng SZ (2014) A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems. Comput Mech 53(5):859–876

    Article  MathSciNet  MATH  Google Scholar 

  152. Yang G, Hu D, Ma G, Wan D (2016) A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis. Meccanica 51(8):1897–1911

    Article  MathSciNet  MATH  Google Scholar 

  153. Cui XY, Hu X, Li GY, Liu GR (2016) A modified smoothed finite element method for static and free vibration analysis of solid mechanics. Int J Comput Methods. doi:10.1142/S0219876216500432

    MathSciNet  MATH  Google Scholar 

  154. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2010) Dispersion free analysis of acoustic problems using the alpha finite element method. Comput Mech 46(6):867–881

    Article  MATH  Google Scholar 

  155. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2010) Coupled analysis of 3D structural–acoustic problems using the edge-based smoothed finite element method/finite element method. Finite Elem Anal Des 46(12):1114–1121

    Article  MathSciNet  Google Scholar 

  156. Yao LY, Yu DJ, Cui XY, Zang XG (2010) Numerical treatment of acoustic problems with the smoothed finite element method. Appl Acoust 71(8):743–753

    Article  Google Scholar 

  157. He ZC, Cheng AG, Zhang GY, Zhong ZH, Liu GR (2011) Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method (ES-FEM). Int J Numer Methods Eng 86:1322–1338

    Article  MathSciNet  MATH  Google Scholar 

  158. He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Li E, Liu GR (2012) An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh. Comput Struct 106:125–134

    Article  Google Scholar 

  159. Li W, Chai Y, Lei M, Liu GR (2014) Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM). Eng Anal Bound Elem 42:84–91

    Article  MathSciNet  MATH  Google Scholar 

  160. Li E, He ZC, Xu X, Liu GR (2015) Hybrid smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng 283:664–688

    Article  MathSciNet  Google Scholar 

  161. He ZC, Li GY, Liu GR, Cheng AG, Li E (2015) Numerical investigation of ES-FEM with various mass re-distribution for acoustic problems. Appl Acoust 89:222–233

    Article  Google Scholar 

  162. Wu F, Liu GR, Li GY, Cheng AG, He ZC, Hu ZH (2015) A novel hybrid FS-FEM/SEA for the analysis of vibro-acoustic problems. Int J Numer Methods Eng 102(12):1815–1829

    Article  MathSciNet  MATH  Google Scholar 

  163. He Z, Li G, Zhang G, Liu G, Gu Y, Li E (2015) Acoustic analysis using a mass-redistributed smoothed finite element method with quadrilateral mesh. Eng Comput 32(8):2292–2317

    Article  Google Scholar 

  164. He ZC, Li E, Li GY, Wu F, Liu GR, Nie X (2015) Acoustic simulation using α-FEM with a general approach for reducing dispersion error. Eng Anal Bound Elem 61:241–253

    Article  MathSciNet  Google Scholar 

  165. Wang G, Cui XY, Feng H, Li GY (2015) A stable node-based smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng 297:348–370

    Article  MathSciNet  Google Scholar 

  166. Wang G, Cui XY, Liang ZM, Li GY (2015) A coupled smoothed finite element method (S-FEM) for structural-acoustic analysis of shells. Eng Anal Bound Elem 61:207–217

    Article  MathSciNet  Google Scholar 

  167. Chai Y, Li W, Gong Z, Li T (2016) Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering problems. Ocean Eng 116:129–141

    Article  Google Scholar 

  168. Chai Y, Li W, Gong Z, Li T (2016) Hybrid smoothed finite element method for two dimensional acoustic radiation problems. Appl Acoust Part A 103:90–101

    Article  Google Scholar 

  169. Wu F, He ZC, Liu GR, Li GY, Cheng AG (2016) A novel hybrid ES-FE-SEA for mid-frequency prediction of transmission losses in complex acoustic systems. Appl Acoust 111:198–204

    Article  Google Scholar 

  170. Kumar V, Metha R (2013) Impact simulations using smoothed finite element method. Int J Comput Methods 10(4):1350012

    Article  MathSciNet  MATH  Google Scholar 

  171. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Method Biomed Eng 27(2):198–218

    Article  MathSciNet  MATH  Google Scholar 

  172. Nguyen-Xuan H, Wu CT, Liu GR (2016) An adaptive selective ES-FEM for plastic collapse analysis. Eur J Mech A-Solid 58:278–290

    Article  MathSciNet  Google Scholar 

  173. Kazemzadeh-Parsi MJ, Daneshmand F (2009) Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method. Finite Elem Anal Des 45(10):599–611

    Article  MathSciNet  Google Scholar 

  174. Li E, Liu GR, Tan V (2010) Simulation of hyperthermia treatment using the edge-based smoothed finite-element method. Numer Heat Transf A-Appl 57(11):822–847

    Article  Google Scholar 

  175. Li E, Liu GR, Tan V, He ZC (2010) An efficient algorithm for phase change problem in tumor treatment using αFEM. Int J Therm Sci 49(10):1954–1967

    Article  Google Scholar 

  176. Kumar V (2013) Smoothed finite element methods for thermo-mechanical impact problems. Int J Comput Methods 10(1):13400100

    Article  MathSciNet  Google Scholar 

  177. Xue BY, Wu SC, Zhang WH, Liu GR (2013) A smoothed FEM (S-FEM) for heat transfer problems. Int J Comput Methods 10(01):1340001

    Article  MathSciNet  Google Scholar 

  178. Feng SZ, Cui XY, Li GY (2013) Analysis of transient thermo-elastic problems using edge-based smoothed finite element method. Int J Therm Sci 65:127–135

    Article  Google Scholar 

  179. Feng SZ, Cui XY, Li GY, Feng H, Xu FX (2013) Thermo-mechanical analysis of functionally graded cylindrical vessels using edge-based smoothed finite element method. Int J Pres Ves Pip 111:302–309

    Article  Google Scholar 

  180. Feng SZ, Cui XY, Li GY (2013) Transient thermal mechanical analyses using a face-based smoothed finite element method (FS-FEM). Int J Therm Sci 74:95–103

    Article  Google Scholar 

  181. Li E, He ZC, Xu X (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermomechanical problems. Int J Heat Mass Transf 66:723–732

    Article  Google Scholar 

  182. Feng S, Cui X, Li G (2014) Thermo-mechanical analyses of composite structures using face-based smoothed finite element method. Int J Appl Mech 6(02):1450020

    Article  Google Scholar 

  183. Li E, Zhang Z, He ZC, Xu X, Liu GR, Li Q (2014) Smoothed finite element method with exact solutions in heat transfer problems. Int J Heat Mass Transf 78:1219–1231

    Article  Google Scholar 

  184. Feng S, Cui X, Li G (2014) Thermo-mechanical analysis of composite pressure vessels using edge-based smoothed finite element method. Int J Comput Methods 11(06):1350089

    Article  MathSciNet  MATH  Google Scholar 

  185. Cui XY, Li ZC, Feng H, Feng SZ (2016) Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. Int J Therm Sci 110:12–25

    Article  Google Scholar 

  186. Nguyen-Van H, Mai-Duy N, Tran-Cong T (2008) A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures. CMES: Comput Model Eng Sci 23(3):209–222

    MATH  Google Scholar 

  187. Nguyen-Van H, Mai-Duy N, Tran-Cong T (2008) A node-based element for analysis of planar piezoelectric structures. CMES: Comput Model Eng Sci 36(1):65–95

    MathSciNet  MATH  Google Scholar 

  188. Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C (2009) An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures. Smart Mater Struct 18(6):065015

    Article  Google Scholar 

  189. Olyaie MS, Razfar MR, Kansa EJ (2011) Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method. CMES: Comput Model Eng Sci 75(1):43–87

    MathSciNet  MATH  Google Scholar 

  190. Olyaie MS, Razfar MR, Wang S, Kansa EJ (2011) Topology optimization of a linear piezoelectric micromotor using the smoothed finite element method. CMES: Comput Model Eng Sci 82(1):55–81

    MATH  Google Scholar 

  191. Chen L, Zhang YW, Liu GR, Nguyen-Xuan H, Zhang ZQ (2012) A stabilized finite element method for certified solution with bounds in static and frequency analyses of piezoelectric structures. Comput Methods Appl Mech Eng 241:65–81

    Article  MathSciNet  MATH  Google Scholar 

  192. Li E, He ZC, Chen L, Li B, Xu X, Liu GR (2015) An ultra-accurate hybrid smoothed finite element method for piezoelectric problem. Eng Anal Bound Elem 50:188–197

    Article  MathSciNet  Google Scholar 

  193. Atia KSR, Heikal AM, Obayya SSA (2015) Efficient smoothed finite element time domain analysis for photonic devices. Opt Express 23(17):22199–22213

    Article  Google Scholar 

  194. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2011) A coupled ES-FEM/BEM method for fluid–structure interaction problems. Eng Anal Bound Elem 35(1):140–147

    Article  MathSciNet  MATH  Google Scholar 

  195. Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. Int J Numer Methods Eng 90(10):1292–1320

    Article  MathSciNet  MATH  Google Scholar 

  196. Yao J, Liu GR, Narmoneva DA, Hinton RB, Zhang ZQ (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50(6):789–804

    Article  MathSciNet  MATH  Google Scholar 

  197. Zhang ZQ, Liu GR, Khoo BC (2013) A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems. Comput Mech 51(2):129–150

    Article  MathSciNet  MATH  Google Scholar 

  198. Nguyen-Thoi T, Phung-Van P, Rabczuk T, Nguyen-Xuan H, Le-Van C (2013) An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid–solid interaction problems. Int J Comput Methods 10(01):1340003

    Article  MathSciNet  MATH  Google Scholar 

  199. Wang S, Khoo BC, Liu GR, Xu GX, Chen L (2014) Coupling GSM/ALE with ES-FEM-T3 for fluid–deformable structure interactions. J Comput Phys 276:315–340

    Article  MathSciNet  MATH  Google Scholar 

  200. Nguyen-Thoi T, Phung-Van P, Nguyen-Hoang S, Lieu-Xuan Q (2014) A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid–solid interaction problems. Appl Math Comput 232:324–346

    MathSciNet  MATH  Google Scholar 

  201. Nguyen-Thoi T, Phung-Van P, Nguyen-Hoang S, Lieu-Xuan Q (2014) A coupled alpha-FEM for dynamic analyses of 2D fluid–solid interaction problems. J Comput Appl Math 271:130–149

    Article  MathSciNet  MATH  Google Scholar 

  202. He T (2015) On a partitioned strong coupling algorithm for modeling fluid–structure interaction. Int J Appl Mech 7(2):1550021

    Article  Google Scholar 

  203. He T (2015) Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. Int J Comput Methods 12(5):1550025

    Article  MathSciNet  MATH  Google Scholar 

  204. Zhang ZQ, Liu GR (2014) Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept. Eng Anal Bound Elem 42:99–114

    Article  MathSciNet  MATH  Google Scholar 

  205. Jiang C, Zhang ZQ, Han X, Liu GR (2014) Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. Int J Numer Methods Eng 99(8):587–610

    Article  MathSciNet  MATH  Google Scholar 

  206. Onishi Y, Amaya K (2014) A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems. Int J Numer Methods Eng 99(5):354–371

    Article  MathSciNet  MATH  Google Scholar 

  207. Jiang C, Liu GR, Han X, Zhang ZQ, Zeng W (2015) A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole. Int J Numer Method Biomed Eng 31(1):1–25

    Article  MathSciNet  Google Scholar 

  208. Onishi Y, Iida R, Amaya K (2016) F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. Int J Numer Methods Eng. doi:10.1002/nme.5337

    MATH  Google Scholar 

  209. Li E, Chen J, Zhang Z, Fang J, Liu GR, Li Q (2016) Smoothed finite element method for analysis of multi-layered systems—applications in biomaterials. Comput Struct 168:16–29

    Article  Google Scholar 

  210. Li E, Liao WH (2016) An efficient finite element algorithm in elastography. Int J Appl Mech 8(3):1650037

    Article  Google Scholar 

  211. de Souza Neto EA, Pires FMA, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int J Numer Methods Eng 62(3):353–383

    Article  MATH  Google Scholar 

  212. Natarajan S, Bordas S, Ooi ET (2015) Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods. Int J Numer Methods Eng 104(13):1173–1199

    Article  MathSciNet  MATH  Google Scholar 

  213. Sohn D, Jin S (2015) Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces. Comput Methods Appl Mech Eng 293:92–113

    Article  MathSciNet  Google Scholar 

  214. Francis A, Ortiz-Bernardin A, Bordas S, Natarajan S (2016) Linear smoothed polygonal and polyhedral finite elements. Int J Numer Methods. doi:10.1002/nme.5324

    Google Scholar 

  215. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2011) An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics. Int J Numer Method Biomed Eng 27(9):1446–1472

    MATH  Google Scholar 

  216. Wang S (2014) An ABAQUS implementation of the cell-based smoothed finite element method using quadrilateral elements. Master thesis, University of Cincinnati

  217. Bordas S, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Eng 86:637–666

    Article  MATH  Google Scholar 

  218. Ong TH, Heaney CE, Lee CK, Liu GR, Nguyen-Xuan H (2015) On stability, convergence and accuracy of bES-FEM and bFS-FEM for nearly incompressible elasticity. Comput Methods Appl Mech Eng 285:315–345

    Article  MathSciNet  Google Scholar 

  219. Wu CT, Hu W, Liu GR (2014) Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity. Int J Numer Methods Eng 100(5):374–398

    Article  MathSciNet  MATH  Google Scholar 

  220. Leonetti L, Garcea G, Nguyen-Xuan H (2016) A mixed edge-based smoothed finite element method (MES-FEM) for elasticity. Comput Struct 173:123–138

    Article  Google Scholar 

  221. Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. Int J Comput Methods 2(4):645–665

    Article  MATH  Google Scholar 

  222. Zhang GY, Liu GR, Wang YY, Huang HT, Zhong ZH, Li GY, Han X (2007) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Numer Methods Eng 72:1524–1543

    Article  MathSciNet  MATH  Google Scholar 

  223. Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74(7):1128–1161

    Article  MathSciNet  MATH  Google Scholar 

  224. Liu GR, Li Y, Dai KY, Luan MT, Xue W (2006) A linearly conforming radial point interpolation method for solid mechanics problems. Int J Comput Methods 3(4):401–428

    Article  MathSciNet  MATH  Google Scholar 

  225. Duong MT (2014) Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method—SFEM. Ph.D. thesis, RWTH Aachen University

  226. Duong MT, Nguyen-Nhu H, Staat M (2015) Modeling and simulation of a growing mass by the smoothed finite element method (SFEM). In: 3rd ECCOMAS Young Investigators Conference. July 20–23, Aachen, Germany

  227. Zeng W, Liu GR, Jiang C, Nguyen-Thoi T, Jiang Y (2016) A generalized beta finite element method with coupled smoothing techniques for solid mechanics. Eng Anal Bound Elem 73:103–119

    Article  MathSciNet  Google Scholar 

  228. Liu GR (2016) On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation. Int J Comput Methods 13(02):1640003

    Article  MathSciNet  MATH  Google Scholar 

  229. Yue JH, Li M, Liu GR, Niu RP (2016) Proofs of the stability and convergence of a weakened weak method using PIM shape functions. Comput Math Appl 72(4):933–951

    Article  MathSciNet  MATH  Google Scholar 

  230. Liu GR, Zhang GY, Wang YY, Zhong ZH, Li GY, Han X (2007) A nodal integration technique for meshfree radial point interpolation method (NI-RPCM). Int J Solids Struct 44:3840–3860

    Article  MATH  Google Scholar 

  231. Chakrabarty J (2006) Theory of plasticity. Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  232. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  233. de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  234. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  235. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    Book  MATH  Google Scholar 

  236. Barth T, Ohlberger M (2004) Finite volume methods: foundation and analysis. In: Stein E, de Borst R, Hughes TJR (eds) Fundamentals, encyclopedia of computational mechanics, vol 1. Wiley, New York

    Google Scholar 

  237. Onate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  238. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  239. Liu MB, Liu GR, Zhou LW, Chang JZ (2015) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  240. Liu J, Zhang ZQ, Zhang GY (2015) A smoothed finite element method (S-FEM) for large-deformation elastoplastic analysis. Int J Comput Methods 12(4):1–26

    MathSciNet  MATH  Google Scholar 

  241. Bordas S, Nguyen-Dang H, Phan-Phuong Q, Nguyen-Xuan H, Natarajan S, Duflot M (2009) Smoothed finite element method for two-dimensional elastoplasticity. Vietnam J Mech VAST 31(3–4):293–312

    Google Scholar 

  242. Carstensen C, Klose R (2002) Elastoviscoplastic finite element analysis in 100 lines of matlab. J Numer Math 10:157–192

    Article  MathSciNet  MATH  Google Scholar 

  243. Suri M (1996) Analytic and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133:347–371

    Article  MATH  Google Scholar 

  244. Zienkiewicz OC, Lefebvre D (1988) A robust triangular plate bending element of Reissner–Mindlin type. Int J Numer Methods Eng 26:1169–1184

    Article  MATH  Google Scholar 

  245. Pian THH, Chen D-P, Kang D (1983) A new formulation of hybrid/mixed finite element. Comput Struct 16(1–4):81–87

    Article  MATH  Google Scholar 

  246. Hughes TJR, Tezduyar T (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. J Appl Mech 48(3):587–596

    Article  MATH  Google Scholar 

  247. Bathe KJ, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

  248. Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements. The use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722

    Article  MATH  Google Scholar 

  249. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  250. César de Sá JMA, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750

    Article  MATH  Google Scholar 

  251. Bletzinger K, Bischoff M, Ramm E (2000) A unified approach for shearlocking-free triangular and rectangular shell finite elements. Comput Struct 75:321–334

    Article  Google Scholar 

  252. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  MATH  Google Scholar 

  253. Hughes TJR, Taylor RL, Kanoknukulchai W (1977) Simple and efficient element for plate bending. Int J Numer Methods Eng 11:1529–1543

    Article  MATH  Google Scholar 

  254. Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nucl Eng Des 46:203–222

    Article  Google Scholar 

  255. Tran LV, Nguyen-Thoi T, Thai CH, Nguyen-Xuan H (2015) An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates. Mech Adv Mater Struc 22(4):248–268

    Article  Google Scholar 

  256. Li E, Zhang Z, Chang CC, Zhou S, Liu GR, Li Q (2015) A new homogenization formulation for multifunctional composites. Int J Comput Methods 13(2):1640002

    Article  MathSciNet  MATH  Google Scholar 

  257. Ihlenburg F, Babuška I (1995) Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int J Numer Methods Eng 38:3745–3774

    Article  MathSciNet  MATH  Google Scholar 

  258. Deraemaeker A, Babuška I, Bouillard P (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int J Numer Methods Eng 46:471–499

    Article  MATH  Google Scholar 

  259. Harari I, Hughes TJR (1992) Galerkin/least-squares finite element methods for the reduced wave equation with nonreflecting boundary conditions in unbounded domains. Comput Methods Appl Mech Eng 98(3):411–454

    Article  MathSciNet  MATH  Google Scholar 

  260. Thompson LL, Pinsky PM (1995) A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation. Int J Numer Methods Eng 38:371–397

    Article  MathSciNet  MATH  Google Scholar 

  261. Babuška I, Ihlenburg F, Paik ET, Sauter SA (1995) A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput Methods Appl Mech Eng 128(3–4):325–359

    Article  MathSciNet  MATH  Google Scholar 

  262. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MathSciNet  MATH  Google Scholar 

  263. Chadwick EA, Bettess P (1997) Modelling of progressive short waves using wave envelopes. Int J Numer Methods Eng 40:3229–3246

    Article  MathSciNet  MATH  Google Scholar 

  264. Franca L, Farhat C, Macedo A, Lessoine M (1997) Residual-free bubbles for the Helmholtz equation. Int J Numer Methods Eng 40:4003–4009

    Article  MathSciNet  MATH  Google Scholar 

  265. Cessenat O, Despres B (1998) Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem. SIAM J Numer Anal 35(1):255–299

    Article  MathSciNet  MATH  Google Scholar 

  266. Bouillard P, Suleau S (1998) Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect. Comput Methods Appl Mech Eng 162(1):317–335

    Article  MATH  Google Scholar 

  267. Farhat C, Harari I, Franca LP (2001) The discontinuous enrichment method. Comput Methods Appl Mech Eng 190:6455–6479

    Article  MathSciNet  MATH  Google Scholar 

  268. Dey S, Datta DK, Shirron JJ, Shephard MS (2006) P-version FEM for structural acoustics with a posteriori error estimation. Comput Methods Appl Mech Eng 195:1946–1957

    Article  MATH  Google Scholar 

  269. Petersen S, Dreyer D, Ov Estorff (2006) Assessment of finite and spectral element shape functions or efficient iterative simulations of interior acoustics. Comput Method Appl Mech Eng 195:6463–6478

    Article  MATH  Google Scholar 

  270. Kireeva O, Mertens T, Bouillard Ph (2006) A coupled EFGM–CIE method for acoustic radiation. Comput Struct 84(29–30):2092–2099

    Article  Google Scholar 

  271. Yao L, Li Y, Li L (2015) Dispersion error reduction for acoustic problems using the smoothed finite element method (SFEM). Int J Numer Methods Fluids 80:343–357

    Article  MathSciNet  Google Scholar 

  272. Li E, He ZC, Zhang Z, Liu GR, Li Q (2016) Stability analysis of generalized mass formulation in dynamic heat transfer. Numer Heat Transf B-Fund 69(4):287–311

    Article  Google Scholar 

  273. Sigrist JF (2015) Fluid-structure interaction: an introduction to finite element coupling. Wiley, West Sussex

    Book  MATH  Google Scholar 

  274. Nguyen-Thoi T, Phung-Van P, Ho-Huu V, Le-Anh L (2015) An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D fluid–solid interaction problems. KSCE J Civ Eng 19(3):641–650

    Article  Google Scholar 

  275. Zeng W (2015) Advanced development of smoothed finite element method (S-FEM) and its applications. Ph.D. thesis, University of Cincinnati

  276. Jiang Y (2013) Smoothed methods for fracture problems and application to composite materials. Ph.D. thesis, National University of Singapore

  277. Nourbakhshnia N (2012) A new singular S-FEM for the linear elastic fracture mechanics. Ph.D. thesis, National University of Singapore

Download references

Acknowledgements

This work is partially supported by US NSF Grant under the Award No. DMS-1214188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study formal consent is not required..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Liu, G.R. Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments. Arch Computat Methods Eng 25, 397–435 (2018). https://doi.org/10.1007/s11831-016-9202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9202-3

Navigation