Skip to main content
Log in

Steady and Transient State Analyses on Conjugate Laminar Forced Convection Heat Transfer

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The term ‘conjugate heat transfer’ refers to a heat transfer process involving an interaction of heat conduction within a solid body with either of the free, forced, and mixed convection from its surface to a fluid flowing over it. It finds application in numerous fields starting from thermal interaction between surrounding air and fins to thermal interaction between flowing fluid and turbine blades. In this article, a systematic literature review of studies pertinent to laminar conjugate conduction-forced convection heat transfer analysis subjected to internal and external flow conditions is performed. The review reports both steady and unsteady state analyses related to experimental, analytical and numerical investigations, in both rectangular and cylindrical geometries with an exemption to micro and mini channel related studies. The studies are categorically put forth initially and an overview of these studies is presented in tabular and graphical form for a swift glance later under each section. This paper is concluded highlighting the salient features of the review, with respect to physical and mathematical models, methodology and applications. The challenges and scope for future study reported at the end of this paper gives the reader an insight into the gaps in the area of conjugate heat transfer analysis of steady and transient state under laminar forced convection flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

A :

Thermal diffusivity ratio

ADI :

Alternating direction implicit

Ar :

Aspect ratio

B :

Buoyancy parameter, angular frequency, Biot number

Bi :

Biot number

Be :

Dimensionless Bejan number

Br :

Brun number

CHT:

Conjugate heat transfer

C R :

Thermal capacity ratio

CFD:

Computational fluid dynamics

CLEARER:

Coupled and linked equations algorithm revised—ER

E :

Elastic number

Ec :

Viscous dissipation parameter

FDM:

Finite difference method

FEM:

Finite element method

FIDAP:

Fluid dynamics analysis package

FVM:

Finite volume method

GITT:

Generalized Integral Transform Technique

H :

Height

h :

Heat transfer coefficient

k :

Thermal conductivity

L, l :

Length

M :

Mach number

Ncc :

Conduction-convection parameter or thermal conductivity ratio (solid to fluid)

Nu :

Nusselt number

Nu + :

Nusselt number ratio

Nu Z :

Local Nusselt number

Pe :

Peclet number

Pr :

Prandtl number

Q t :

Total heat generation parameter

q + :

Heat flux ratio

Re, Re H :

Reynolds number

Ri :

Richardson number

SIMPLE:

Semi-implicit method for pressure linked equations

SIMPLER:

Semi-implicit method for pressure linked equations revised

T :

Ambient temperature

T w :

Wall temperature

UFED:

Uniform flow effective diffusivity

u :

Axial velocity

u :

Free stream velocity

v :

Transverse velocity

max :

Maximum

s :

Solid

f :

Fluid

T :

Thickness

w :

Wall

t :

Total, time, thermalization

:

Free stream

R :

Ratio

sat :

Saturation

min :

Minimum

ф :

Conductance parameter

ξ :

Channel length

ζ, α :

Conjugate parameter

δT :

Thermal boundary layer thickness

θ max :

Dimensionless maximum temperature

ϕ :

Porosity

δ :

Boundary layer thickness

θ :

Dimensionless temperature

β :

Radius ratio

η tt :

Thermalization time

References

  1. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46. https://doi.org/10.1038/nmat1284

    Article  Google Scholar 

  2. Hoogland S, Dhanjal S, Tropper AC, Roberts JS, Haring R, Paschotta R, et al (2000) Passively mode-locked diode-pumped surface-emitting semiconductor laser. In: Pacific rim conference on lasers and electro-optics, CLEO—technical digest; vol 12, pp 1135–7. https://doi.org/10.1109/68.874213

    Article  Google Scholar 

  3. Vikhrenko VS (2011) Heat transfer—engineering applications. INTECH Open Access Publisher, London

    Book  Google Scholar 

  4. Karim MR, Kattoura M, Mannava SR, Vasudevan VK, Malik AS, Qian D (2017) A computational study on the microstructural evolution in near-surface copper grain boundary structures due to femtosecond laser processing. Comput Mech. https://doi.org/10.1007/s00466-017-1449-5

    Article  MATH  Google Scholar 

  5. Chowdhury IH, Xu X (2003) Heat transfer in femtosecond laser processing of metal. Numer Heat Transf Part A Appl 44:219–232. https://doi.org/10.1080/716100504

    Article  Google Scholar 

  6. Gu D, Dai D (2016) Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material. J Appl Phys 120:83104. https://doi.org/10.1063/1.4961410

    Article  Google Scholar 

  7. Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying: from splat to coating formation. J Therm Spray Technol 25:1534–1553. https://doi.org/10.1007/s11666-016-0435-3

    Article  Google Scholar 

  8. Vilémová M, Pala Z, Jäger A, Matějíček J, Chernyshova M, Kowalska-Strzęciwilk E et al (2016) Evaluation of surface, microstructure and phase modifications on various tungsten grades induced by pulsed plasma loading. Phys Scr 91:34003. https://doi.org/10.1088/0031-8949/91/3/034003

    Article  Google Scholar 

  9. González C, Vilatela JJ, Molina-Aldareguía JM, Lopes CS, LLorca J (2017) Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci 89:194–251. https://doi.org/10.1016/j.pmatsci.2017.04.005

    Article  Google Scholar 

  10. Yazdani Sarvestani H, Akbarzadeh AH, Hojjati M (2017) Hygro-thermo-mechanical analysis of fiber-steered composite conical panels. Compos Struct 179:146–160. https://doi.org/10.1016/j.compstruct.2017.07.055

    Article  Google Scholar 

  11. Haldar A, Reinoso J, Jansen E, Rolfes R (2017) Thermally induced multistable configurations of variable stiffness composite plates: semi-analytical and finite element investigation. Compos Struct. https://doi.org/10.1016/J.COMPSTRUCT.2017.02.014

    Article  Google Scholar 

  12. Linke B (2016) Bonding systems. Springer, Berlin, pp 63–95. https://doi.org/10.1007/978-3-319-28346-3_3

    Book  Google Scholar 

  13. Ghoreishy MHR (2016) A state-of-the-art review on the mathematical modeling and computer simulation of rubber vulcanization process. Iran Polym J 25:89–109. https://doi.org/10.1007/s13726-015-0405-5

    Article  Google Scholar 

  14. Petroski J (2016) Thermal analysis of Ethernet connector in power applications with an engineering mechanics approach. In: 2016 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems. IEEE, Las Vegas, NV, USA, pp. 823–9. https://doi.org/10.1109/itherm.2016.7517631

  15. Nolan S, Jones CE, Norman PJ, Galloway SJ (2017) Understanding the impact of failure modes of cables for the design of turbo-electric distributed propulsion electrical power systems. In: 2016 international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles and international transportation electrification conference, ESARS-ITEC 2016. https://doi.org/10.1109/esars-itec.2016.7841363

  16. Kumar S, Pal G, Shah T (2017) High performance overhead power lines with carbon nanostructures for transmission and distribution of electricity from renewable sources. J Clean Prod 145:180–187. https://doi.org/10.1016/j.jclepro.2017.01.053

    Article  Google Scholar 

  17. Boukrouche F, Moreau C, Harmand S, Beaubert F, Pellé J, Moreau O (2016) A thermal study of power cables cooling in tunnels. J Phys Conf Ser 745:32032. https://doi.org/10.1088/1742-6596/745/3/032032

    Article  Google Scholar 

  18. Doukas DI, Member S, Chrysochos AI, Papadopoulos TA, Labridis DP, Member S et al (2017) Superconducting DC transmission cable. IEEE Trans Appl Supercond 27:5400608. https://doi.org/10.1109/TASC.2017.2656785

    Article  Google Scholar 

  19. Yin Y, Bao J, Xiao X, Liu J, Lu Y (2016) Objective characterization on the dynamic friction coefficient of disc brake. Tribol Trans 59:1122–1133. https://doi.org/10.1080/10402004.2016.1141444

    Article  Google Scholar 

  20. Chang X, Peng Y, Zhu Z, Wang D, Gong X, Zou S et al (2016) Tribological properties of winding hoisting rope between two layers with different sliding parameters. Adv Mech Eng 8:168781401667991. https://doi.org/10.1177/1687814016679911

    Article  Google Scholar 

  21. Yin Y, Xiao X, Bao J, Liu J, Lu Y, Ji Y (2016) A new temperature parameter set for characterizing the frictional temperature rise of disc brakes. Ind Lubr Tribol 68:35–44. https://doi.org/10.1108/ILT-03-2015-0033

    Article  Google Scholar 

  22. Jamal-Abad MT, Saedodin S, Aminy M (2016) Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: a perturbation solution. Renew Energy 91:147–154. https://doi.org/10.1016/J.RENENE.2016.01.050

    Article  Google Scholar 

  23. Tongkratoke A, Pramuanjaroenkij A, Chaengbamrung A, Kakac S (2016) Development of mathematical modeling for nanofluids as porous media in heat transfer technology. Heat Pipe Sci Technol Int J 7:17–29. https://doi.org/10.1615/HeatPipeScieTech.2016017200

    Article  Google Scholar 

  24. Krishnamurthy MR, Prasannakumara BC, Gireesha BJ, Gorla RSR (2016) Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng Sci Technol Int J 19:53–61. https://doi.org/10.1016/J.JESTCH.2015.06.010

    Article  Google Scholar 

  25. Afzal A, Samee ADM, Razak RKA (2017) Experimental thermal investigation of CuO-W nanofluid in circular minichannel. Model Meas Control B 86:335–344

    Article  Google Scholar 

  26. Afzal A, Samee ADM, Javad A, Shafvan SA, Ajinas PV, Kabeer KMA (2017) Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf Res. https://doi.org/10.1002/htj.21318

    Article  Google Scholar 

  27. Afzal A, Nawfal I, Mahbubul IM, Kumbar SS (2018) An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7144-8

    Article  Google Scholar 

  28. Kumar M, Afzal A, Ramis MK (2017) Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. Tribol Finnish J Tribol 35:6–15

    Google Scholar 

  29. Dumont Marie-Noëlle, Heyen Georges (2004) Mathematical modelling and design of an advanced once-through heat recovery steam generator. Comput Chem Eng 28:651–660. https://doi.org/10.1016/J.COMPCHEMENG.2004.02.034

    Article  Google Scholar 

  30. González-Gómez PÁ, Petrakopoulou F, Briongos JV, Santana D (2017) Steam generator design for solar towers using solar salt as heat transfer fluid. In: AIP conference proceedings. AIP Publishing, p. 30020. https://doi.org/10.1063/1.4984363

  31. Schwaiger K, Haider M, Haemmerle M, Steiner P, Obermaier M-D (2016) Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout. In: AIP conference proceedings. AIP Publishing, p. 60004. https://doi.org/10.1063/1.4949146

  32. Ferguson CR, Kirkpatrick AT (2015) Internal combustion engines: applied thermosciences. Wiley, Heboken

    Google Scholar 

  33. Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13:1–46. https://doi.org/10.1016/0360-1285(87)90005-0

    Article  Google Scholar 

  34. Andersson O, Melander A (2015) Prediction and verification of resistance spot welding results of ultra-high strength steels through FE simulations. Model Numer Simul Mater Sci 5:26–37. https://doi.org/10.4236/mnsms.2015.51003

    Article  Google Scholar 

  35. Jhajj Kamalpreet S, Slezak Stan R, Dauna Kyle J (2015) Inferring the specific heat of an ultra high strength steel during the heating stage of hot forming die quenching, through inverse analysis. Appl Therm Eng 83:98–107. https://doi.org/10.1016/J.APPLTHERMALENG.2015.03.013

    Article  Google Scholar 

  36. Maeno T, Mori K-I, Fujimoto M (2015) Improvements in productivity and formability by water and die quenching in hot stamping of ultra-high strength steel parts. CIRP Ann 64:281–284. https://doi.org/10.1016/j.cirp.2015.04.128

    Article  Google Scholar 

  37. Mohammadian SK, Zhang Y (2015) Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. J Power Sour 273:431–439. https://doi.org/10.1016/j.jpowsour.2014.09.110

    Article  Google Scholar 

  38. Ling Z, Wang F, Fang X, Gao X, Zhang Z (2015) A hybrid thermal management system for lithium ion batteries combining phase change materials with forced - air cooling. Appl Energy 148:403–409. https://doi.org/10.1016/j.apenergy.2015.03.080

    Article  Google Scholar 

  39. Wang T, Tseng KJ, Zhao J (2015) Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl Therm Eng 90:521–529. https://doi.org/10.1016/j.applthermaleng.2015.07.033

    Article  Google Scholar 

  40. Kaladgi AR, Samee ADM, Ramis MK (2016) Thermal performance characteristics of liquid sodium as a coolant flowing past a rectangular nuclear fuel element. Int J Nucl Energy Sci Technol 10:11–27. https://doi.org/10.1504/IJNEST.2016.076347

    Article  Google Scholar 

  41. Winterton RHS (1981) Thermal design nuclear reactors. Pergamon, Oxford

    Google Scholar 

  42. El-Wakil M (1962) Nuclear power engineering. McGraw-Hill Book Company Inc, New York.

    Google Scholar 

  43. Afzal A, Ansari Z, Faizabadi A, Ramis M (2017) Parallelization strategies for computational fluid dynamics software: state of the art review. Arch Comput Methods Eng 24:337–363. https://doi.org/10.1007/s11831-016-9165-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Rafeeq M, Afzal A, Rajendra S (2018) Remote supervision and control of air conditioning systems in different modes. J Inst Eng Ser C. https://doi.org/10.1007/s40032-017-0434-2

    Article  Google Scholar 

  45. Dixit Atish, Gade Upender (2015) A case study on human bio-heat transfer and thermal comfort within CFD. Build Environ 94:122–130. https://doi.org/10.1016/J.BUILDENV.2015.07.016

    Article  Google Scholar 

  46. Phuong NL, Yamashita M, Yoo S-J, Ito K (2016) Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions. Build Environ 100:172–185. https://doi.org/10.1016/j.buildenv.2016.02.020

    Article  Google Scholar 

  47. Fiala D, Havenith G (2015) Modelling human heat transfer and temperature regulation. Springer International Publishing, Mechanobiol. Mechanophysiology Mil. Inj.

    Book  Google Scholar 

  48. Hedlund CR, Ligrani PM, Moon H-K, Glezer B (2017) Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling. ASME 1998 Int. Gas Turbine Aeroengine Congr. Exhib. Heat Transf. Electr. Power; Ind. Cogener. Vol. 4, Stockholm, Sweden, p. V004T09A081-V004T09A081. https://doi.org/10.1115/98-gt-466

  49. Han J-C, Dutta S, Ekkad S (2012) Gas turbine heat transfer and cooling technology. CRC Press, Boca Raton

    Google Scholar 

  50. Pinto R, Afzal A, D’Souza L, Ansari Z, Mohammed Samee AD (2017) Computational fluid dynamics in turbomachinery: a review of state of the art. Arch Comput Methods Eng 24:467–479. https://doi.org/10.1007/s1183

    Article  MathSciNet  MATH  Google Scholar 

  51. Pinto RN, Afzal A, Navaneeth IM, Ramis MK (2016) Computational analysis of flow in turbines. In: 2016 international conference on inventive computation technologies, Coimbatore, India. IEEE, p. (3) 1–5. https://doi.org/10.1109/inventive.2016.7830174

  52. Kays W, Crawford M, Weigand B (2012) Convective heat and mass transfer. Tata McGraw-Hill Education, New York City

    Google Scholar 

  53. Welty J, Wicks C, Rorrer G, Wilson R (2009) Fundamentals of momentum, heat, and mass transfer. Wiley, Hoboken

    Google Scholar 

  54. Thirumaleshwar M (2009) Fundamentals of heat and mass transfer. Pearson Education India, Bengaluru

    Google Scholar 

  55. Bergman T, Incropera F, DeWitt D, Lavine A (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  56. Incropera F, De Witt D (1985) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  57. Guan T, Zhang J, Zhou J, Shan Y, Hang J (2017) Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle—Part 1: experimental analysis. Int J Heat Mass Transf 106:339–355. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.101

    Article  Google Scholar 

  58. Armando GM, Armando BBJ, Christian VC, Rangel-Hernandez VH, Belman-Flores JM (2010) Analysis of the conjugate heat transfer in a multi-layer wall including an air layer. Appl Therm Eng 30:599–604. https://doi.org/10.1016/j.applthermaleng.2009.11.004

    Article  Google Scholar 

  59. Aydin O (2006) Conjugate heat transfer analysis of double pane windows. Build Environ 41:109–116. https://doi.org/10.1016/j.buildenv.2005.01.011

    Article  Google Scholar 

  60. Guan T, Zhou Zhang J, Shan Y, Hang J (2017) Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle—part 1: experimental analysis. Int J Heat Mass Transf 106:329–338. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.101

    Article  Google Scholar 

  61. Wang Q, Jaluria Y (2004) Three-dimensional conjugate heat transfer in a horizontal channel with discrete heating. J Heat Transf 126:642. https://doi.org/10.1115/1.1773195

    Article  Google Scholar 

  62. Kuznetsov GV, Sheremet MA (2010) Numerical simulation of convective heat transfer modes in a rectangular area with a heat source and conducting walls. J Heat Transf 132:81401. https://doi.org/10.1115/1.4001303

    Article  Google Scholar 

  63. Conti A, Lorenzini G, Jaluria Y (2012) Transient conjugate heat transfer in straight microchannels. Int J Heat Mass Transf 55:7532–7543. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.046

    Article  Google Scholar 

  64. Ramiar A, Ranjbar AA (2013) Two-dimensional variable property conjugate heat transfer simulation of nanofluids in microchannels. J Nanosci 2013:1–10. https://doi.org/10.1155/2013/217382

    Article  Google Scholar 

  65. Dorfman A, Renner Z (2009) Conjugate problems in convective heat transfer: review. Math Probl Eng 2009:1–27. https://doi.org/10.1155/2009/927350

    Article  MathSciNet  MATH  Google Scholar 

  66. Hsiao K-L, Chen G-B (2007) Conjugate heat transfer of mixed convection for viscoelastic fluid past a stretching sheet. Math Probl Eng 2007:1–21. https://doi.org/10.1155/2007/17058

    Article  MathSciNet  MATH  Google Scholar 

  67. Kilic M, Calisir T, Baskaya S (2016) Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-016-0521-y

    Article  Google Scholar 

  68. Valueva EP, Purdin MS (2016) Heat exchange at laminar flow in rectangular channels. Thermophys Aeromech 23:857–867. https://doi.org/10.1134/S0869864316060081

    Article  Google Scholar 

  69. Satish N, Venkatasubbaiah K (2016) Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow. Appl Therm Eng 100:987–998. https://doi.org/10.1016/j.applthermaleng.2016.02.076

    Article  Google Scholar 

  70. Durgam S, Venkateshan SP, Sundararajan T (2017) Experimental and numerical investigations on optimal distribution of heat source array under natural and forced convection in a horizontal channel. Int J Therm Sci 115:125–138. https://doi.org/10.1016/j.ijthermalsci.2017.01.017

    Article  Google Scholar 

  71. Nonino C, Savino S, Del Giudice S, Mansutti L (2009) Conjugate forced convection and heat conduction in circular microchannels. Int J Heat Fluid Flow 30:823–830. https://doi.org/10.1016/j.ijheatfluidflow.2009.03.009

    Article  Google Scholar 

  72. Mansoor MM, Wong K-C, Siddique M (2012) Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels. Int Commun Heat Mass Transf 39:291–297. https://doi.org/10.1016/j.icheatmasstransfer.2011.12.002

    Article  Google Scholar 

  73. Harman SA, Cole KD (2001) Conjugate heat transfer from a two- layer substrate model of a convectively cooled circuit board. J Electron Packag 123:156–158. https://doi.org/10.1115/1.1348011

    Article  Google Scholar 

  74. Ortega A, Ramanathan S (2003) On the use of point source solutions for forced air cooling of electronic components—Part I: thermal wake models for rectangular heat sources. J Electron Packag 125:235. https://doi.org/10.1115/1.1569507

    Article  Google Scholar 

  75. Ramis MK, Jilani G (2004) Thermal performance characteristics of a nuclear fuel element dissipating heat in a surrounding medium. In: Proceedings of the ESDA04 7th Biennial conference engineering systems design and analysis, Manchester, England, p. 247–52. https://doi.org/10.1115/esda2004-58370

  76. Poddar A, Chatterjee R, Chakravarty A, Ghosh K, Mukhopadhyay A, Sen S (2015) Thermodynamic analysis of a solid nuclear fuel element surrounded by flow of coolant through a concentric annular channel. Prog Nucl Energy 85:178–191. https://doi.org/10.1016/j.pnucene.2015.06.018

    Article  Google Scholar 

  77. Krikkis RN (2017) Laminar conjugate forced convection over a flat plate. Multiplicities and stability. Int J Therm Sci 111:204–214. https://doi.org/10.1016/j.ijthermalsci.2016.08.021

    Article  Google Scholar 

  78. Senapati JR, Dash SK, Roy S (2017) Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins. Int J Therm Sci 111:146–159. https://doi.org/10.1016/j.ijthermalsci.2016.08.019

    Article  Google Scholar 

  79. Ahmad W, Syed KS, Ishaq M, Hassan A, Iqbal Z (2017) Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM. Appl Therm Eng 111:1184–1201. https://doi.org/10.1016/j.applthermaleng.2016.09.171

    Article  Google Scholar 

  80. Kumar GG, Rao CG (2011) Interaction of surface radiation with conjugate mixed convection from a vertical plate with multiple nonidentical discrete heat sources. Chem Eng Commun 198:692–710. https://doi.org/10.1080/00986445.2011.532745

    Article  Google Scholar 

  81. Sudhakar T, Balaji C, Venkateshan S (2009) Optimal configuration of discrete heat sources in a vertical duct under conjugate mixed convection using artificial neural networks. Int J Therm Sci 48:881–890. https://doi.org/10.1016/j.ijthermalsci.2008.06.013

    Article  Google Scholar 

  82. Sawant SM, Gururaja Rao C (2008) Conjugate mixed convection with surface radiation from a vertical electronic board with multiple discrete heat sources. Heat Mass Transf Und Stoffuebertragung 44:1485–1495. https://doi.org/10.1007/s00231-008-0395-3

    Article  Google Scholar 

  83. Mathews RN, Balaji C, Sundararajan T (2007) Computation of conjugate heat transfer in the turbulent mixed convection regime in a vertical channel with multiple heat sources. Heat Mass Transf Und Stoffuebertragung 43:1063–1074. https://doi.org/10.1007/s00231-006-0192-9

    Article  Google Scholar 

  84. Ahamad SI, Balaji C (2015) A simple thermal model for mixed convection from protruding heat sources. Heat Transf Eng 36:396–407. https://doi.org/10.1080/01457632.2014.923984

    Article  Google Scholar 

  85. Rao GM, Narasimham GSVL (2007) Laminar conjugate mixed convection in a vertical channel with heat generating components. Int J Heat Mass Transf 50:3561–3574. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.030

    Article  MATH  Google Scholar 

  86. Rao CG, Balaji C, Venkateshan SP (2014) Surface radiation from a vertical plate with a discrete heat source. J Heat Transf 123:698–702. https://doi.org/10.1115/1.1373654

    Article  Google Scholar 

  87. He J, Liu L, Jacobi AM (2011) Conjugate thermal analysis of air-cooled discrete flush-mounted heat sources in a horizontal channel. J Electron Packag 133:41001. https://doi.org/10.1115/1.4005299

    Article  Google Scholar 

  88. Premachandran B, Balaji C (2011) Conjugate mixed convection with surface radiation from a vertical channel with protruding heat sources. Numer Heat Transf Part A Appl 60:171–196. https://doi.org/10.1080/10407782.2011.588577

    Article  MATH  Google Scholar 

  89. Gururaja Rao C, Balaji C, Venkateshan SP (2002) Effect of surface radiation on conjugate mixed convection in a vertical channel with a discrete heat source in each wall. Int J Heat Mass Transf 45:3331–3347. https://doi.org/10.1016/S0017-9310(02)00061-3

    Article  MATH  Google Scholar 

  90. Al-Sanea SA (2003) Convection regimes and heat transfer characteristics along a continuously moving heated vertical plate. Int J Heat Fluid Flow 24:888–901. https://doi.org/10.1016/j.ijheatfluidflow.2003.10.001

    Article  Google Scholar 

  91. Bautista O, Mendez F (2006) Internal heat generation in a discrete heat source: conjugate heat transfer analysis. Appl Therm Eng 26:2201–2208. https://doi.org/10.1016/j.applthermaleng.2006.03.018

    Article  Google Scholar 

  92. Nigen JS, Amon CH (1994) Time-dependent conjugate heat-transfer characteristics of self-sustained oscillatory flows in a grooved channel. J Fluids Eng ASME 116:499–507. https://doi.org/10.1115/1.2910305

    Article  Google Scholar 

  93. Aydin O, Avci M, Bali T, Arici ME (2014) Conjugate heat transfer in a duct with an axially varying heat flux. Int J Heat Mass Transf 76:385–392. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.062

    Article  Google Scholar 

  94. Perelman TL (1961) On conjugated problems of heat transfer. Int J Heat Mass Transf 3:293–303. https://doi.org/10.1016/0017-9310(61)90044-8

    Article  Google Scholar 

  95. Luikov A, Aleksashenko V, Aleksashenko A (1971) Analytical methods of solution of conjugated problems in convective heat transfer. Int J Heat Mass Transf 14:1047–1056. https://doi.org/10.1016/0017-9310(71)90203-1

    Article  MATH  Google Scholar 

  96. Luikov AV (1974) Conjugate convective heat transfer problems. Int J Heat Mass Transf 17:257–265. https://doi.org/10.1016/0017-9310(74)90087-8

    Article  Google Scholar 

  97. Payvar P (1977) Convective heat transfer to laminar flow over a plate of finite thickness. Int J Heat Mass Transf 20:431–433. https://doi.org/10.1016/0017-9310(77)90165-X

    Article  MATH  Google Scholar 

  98. Pozzi A, Lupo M (1989) The coupling of conduction with forced convection over a flat plate. Int J Heat Mass Transf 32:1207–1214. https://doi.org/10.1016/0017-9310(89)90021-5

    Article  Google Scholar 

  99. Ma SW, Behbahani AI, Tsuei YG (1991) Two-dimensional rectangular fin with variable heat transfer coefficient. Int J Heat Mass Transf 34:79–85. https://doi.org/10.1016/0017-9310(91)90175-E

    Article  Google Scholar 

  100. Rizk TA, Kleinstreuer C, Ozisik MN (1992) Analytic solution to the conjugate heat transfer problem of flow past a heated block. Int J Heat Mass Transf 35:1519–1525. https://doi.org/10.1016/0017-9310(92)90041-P

    Article  MATH  Google Scholar 

  101. Prasad BVSSS, Sarkar SD (1993) Conjugate laminar forced convection from a flat plate with imposed pressure gradient. J Heat Transf 115:469–472. https://doi.org/10.1115/1.2910702

    Article  Google Scholar 

  102. Mosaad M (1999) Laminar forced convection conjugate heat transfer over a flat plate. Heat Mass Transf 35:371–375. https://doi.org/10.1007/s002310050338

    Article  Google Scholar 

  103. Harman SA, Cole KD (2001) Conjugate heat transfer from a two- layer substrate model of a convectively cooled circuit board. J Electron Packag 123:156–158. https://doi.org/10.1115/1.1348011

    Article  Google Scholar 

  104. Fredrik Stein C, Johansson P, Bergh J, Löfdahl L, Sen M, Gad-el-Hak M (2002) An analytical asymptotic solution to a conjugate heat transfer problem. Int J Heat Mass Transf 45:2485–2500. https://doi.org/10.1016/S0017-9310(01)00343-X

    Article  MATH  Google Scholar 

  105. Lindstedt M, Karvinen R (2017) Conjugated heat transfer from a uniformly heated plate and a plate fin with uniform base heat flux. Int J Heat Mass Transf 107:89–95. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.079

    Article  Google Scholar 

  106. Faghri M, Sparrow EM (1980) Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer. J Heat Transf 102:58–63

    Article  Google Scholar 

  107. Wijeysundera NE (1986) Laminar forced convection in circular and flat ducts with wall axial conduction and external convection. Int J Heat Mass Transf 29:797–807. https://doi.org/10.1016/0017-9310(86)90131-6

    Article  MATH  Google Scholar 

  108. Zebib A, Wo YK (1989) A two-dimensional conjugate heat transfer model for forced air cooling of an electronic device. J Electron Packag 111:41–45. https://doi.org/10.1115/1.3226507

    Article  Google Scholar 

  109. Luna N, Mendez F, Trevino C (2002) Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow. Int J Heat Mass Transf 45:655–666. https://doi.org/10.1016/S0017-9310(01)00147-8

    Article  MATH  Google Scholar 

  110. Nield DA (2004) Forced convection in a parallel plate channel with asymmetric heating. Int J Heat Mass Transf 47:5609–5612. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.006

    Article  MATH  Google Scholar 

  111. Horvat A, Mavko B (2005) Calculation of conjugate heat transfer problem with volumetric heat generation using the Galerkin method. Appl Math Model 29:477–495. https://doi.org/10.1016/j.apm.2004.09.012

    Article  MATH  Google Scholar 

  112. Barletta A, di Schio E, Comini G, D’Agaro P (2008) Conjugate forced convection heat transfer in a plane channel: longitudinally periodic regime. Int J Therm Sci 47:43–51. https://doi.org/10.1016/j.ijthermalsci.2007.01.013

    Article  Google Scholar 

  113. Bula AJ, Vasquez RS (2010) Uncoupling laminar conjugate heat transfer through Chebyshev polynomial. Dyna; 77:160–71. http://www.revistas.unal.edu.co/index.php/dyna/article/view/25548

  114. Sucec J (1975) Unsteady heat transfer between a fluid, with time varying temperature, and a plate: an exact solution. Int J Heat Mass Transf 18:25–36. https://doi.org/10.1016/0017-9310(75)90004-6

    Article  Google Scholar 

  115. Sucec J (1980) Transient heat transfer between a plate and a fluid whose temperature varies periodically with time. J Heat Transf 102:126. https://doi.org/10.1115/1.3244223

    Article  Google Scholar 

  116. Sucec J (1981) An improved quasi-steady approach for transient conjugated forced convection problems. Int J Heat Mass Transf 24:1711–1722. https://doi.org/10.1016/0017-9310(81)90079-X

    Article  MATH  Google Scholar 

  117. Sucec J, Sawant AM (1984) Unsteady, conjugated, forced convection heat transfer in a parallel plate duct. Int J Heat Mass Transf 27:95–101. https://doi.org/10.1016/0017-9310(84)90241-2

    Article  Google Scholar 

  118. Sucec J (1987) Exact solution for unsteady conjugated heat transfer in the thermal entrance region of a duct. J Heat Transf 109:295–299. https://doi.org/10.1115/1.3248079

    Article  Google Scholar 

  119. Sucec J (2002) Unsteady forced convection with sinusoidal duct wall generation: the conjugate heat transfer problem. Int J Heat Mass Transf 45:1631–1642. https://doi.org/10.1016/S0017-9310(01)00275-7

    Article  MATH  Google Scholar 

  120. Treviño C, Liñán A (1984) External heating of a flat plate in a convective flow. Int J Heat Mass Transf 27:1067–1073. https://doi.org/10.1016/0017-9310(84)90122-4

    Article  MATH  Google Scholar 

  121. Pozzi A, Tognaccini R (2000) Coupling of conduction and convection past an impulsively started semi-infinite flat plate. Int J Heat Mass Transf 43:1121–1131. https://doi.org/10.1016/S0017-9310(99)00210-0

    Article  MATH  Google Scholar 

  122. Luna N, Mendez F, Mar E (2003) Transient analysis of the conjugated heat transfer in circular ducts with a power-law fluid. J Nonnewton Fluid Mech 111:69–85. https://doi.org/10.1016/s0377-0257(03)00014-4

    Article  MATH  Google Scholar 

  123. Meng F, Dong S, Wang J, Guo D (2016) A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem. Theor Appl Mech Lett 6:233–235. https://doi.org/10.1016/j.taml.2016.08.005

    Article  Google Scholar 

  124. Karvinen R (1988) Transient conjugated heat-transfer to laminar-flow in a tube or channel. Int J Heat Mass Transf 31:1326–1328. https://doi.org/10.1016/0017-9310(88)90076-2

    Article  Google Scholar 

  125. Santos WFN, Travelho JS (1993) Transient conjugated forced convection in a parallel plate duct with convection from the ambient and periodic variation of inlet temperature. Appl Sci Res 51:625–638. https://doi.org/10.1007/BF00868004

    Article  MATH  Google Scholar 

  126. Al-Nimr MA, Abu-Hijleh BA (2001) Validation of the thermal equilibrium assumption in the transient conjugated forced convection channel flow. Heat Mass Transf 37:361–369. https://doi.org/10.1007/s002310000167

    Article  Google Scholar 

  127. Maranzana G, Perry I, Maillet D (2004) Modeling of conjugate heat transfer between parallel plates separated by a hydrodynamically developed laminar flow by the quadrupole method. Numer Heat Transf Part A Appl 46:147–165. https://doi.org/10.1080/10407780490457572

    Article  Google Scholar 

  128. Pozzi A, Tognaccini R (2011) Conjugated heat transfer in unsteady channel flows. Int J Heat Mass Transf 54:4019–4027. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.019

    Article  MATH  Google Scholar 

  129. Adelaja AO, Dirker J, Meyer JP (2014) Effects of the thick walled pipes with convective boundaries on laminar flow heat transfer. Appl Energy 130:838–845. https://doi.org/10.1016/j.apenergy.2014.01.072

    Article  Google Scholar 

  130. Knupp DC, Cotta RM, Naveira-Cotta CP (2015) Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms. Int J Heat Mass Transf 82:479–489. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.007

    Article  Google Scholar 

  131. Sohal MS, Howell JR (1973) Determination, of plate temperature in case of combined conduction, convection and radiation heat exchange. Int J Heat Ans Mass Transf 16:2055–2066. https://doi.org/10.1016/0017-9310(73)90108-7

    Article  MATH  Google Scholar 

  132. Karvinen R (1978) Some new results for conjugated heat transfer in a flat plate. Int J Heat Mass Transf 21:1261–1264. https://doi.org/10.1016/0017-9310(78)90145-X

    Article  Google Scholar 

  133. Brosh A, Degani D, Zalmanovich S (1982) Conjugated heat transfer in a laminar boundary layer with heat source at the wall. J Heat Transf 104:90–95

    Article  Google Scholar 

  134. Char MI, Chen CK, Cleaver JW (1990) Conjugate forced convection heat transfer from a continuous, moving flat sheet. Int J Heat Fluid Flow 11:257–261. https://doi.org/10.1016/0142-727X(90)90046-E

    Article  Google Scholar 

  135. Yu W-S, Lint H-T, Hwang T-Y (1991) Conjugate heat transfer of conduction and forced convection along wedges and a rotating cone. Int J Heat Mass Transf 34:2497–2507. https://doi.org/10.1016/0017-9310(91)90091-R

    Article  Google Scholar 

  136. Culham JR, Lemczyk TF, Lee S, Yovanovich MM (1991) META- A conjugate heat transfer model for air cooling of circuit boards with arbitrarily located heat source. In: ASME national heat transfer conference heat transfer in electronic equipment, vol. 171, pp. 117–26. http://www.mhtl.uwaterloo.ca/old/paperlib/papers/elect/circuit/conj/abstract2.html

  137. Lim JS, Bejan A, Kim JH (1992) The optimal thickness of a wall with convection on one side. Int J Heat Mass Transf 35:1673–1679. https://doi.org/10.1016/0017-9310(92)90138-I

    Article  MATH  Google Scholar 

  138. Pop I, Ingham DB (1993) A note on conjugate flow forced convection past a fiat plate. Int J Heat Mass Transf 36:3873–3876. https://doi.org/10.1016/0017-9310(93)90068-H

    Article  MATH  Google Scholar 

  139. Pop I, Kumari M, Nath G (1994) Conjugate MHD flow past a flat plate. Acta Mech 106:215–220. https://doi.org/10.1007/BF01213563

    Article  MATH  Google Scholar 

  140. Cole KD (1997) Conjugate heat transfer from a small heated strip. Int J Heat Mass Transf 40:2709–2719. https://doi.org/10.1016/S0017-9310(96)00232-3

    Article  MATH  Google Scholar 

  141. Wang T (1997) The analysis of conjugate problems of conduction and convection for non-newtonian fluids past a flat plate. Int Commun Heat Ans Mass Transf 24:337–348. https://doi.org/10.1016/S0735-1933(97)00019-5

    Article  Google Scholar 

  142. Vynnycky M, Kimura S, Kanev K, Pop I (1998) Forced convection heat transfer from a flat plate: the conjugate problem. Int J Heat Mass Transf 41:45–59. https://doi.org/10.1016/S0017-9310(97)00113-0

    Article  MATH  Google Scholar 

  143. Shu, Pop I, J-J, Pop I (1998) On thermal boundary layers on a flat plate subjected to a variable heat flux. Int J Heat Fluid Flow 19:79–84. https://doi.org/10.1016/s0142-727x(97)10026-1

    Article  Google Scholar 

  144. Hriberšek M, Kuhn G (2000) Conjugate heat transfer by boundary-domain integral method. Eng Anal Bound Elem 24:297–305. https://doi.org/10.1016/S0955-7997(00)00008-4

    Article  MATH  Google Scholar 

  145. Chida K (2000) Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition. Int J Heat Ans Mass Transf 43:639–642. https://doi.org/10.1016/S0017-9310(99)00170-2

    Article  MATH  Google Scholar 

  146. Hajmohammadi MR, Nourazar SS (2014) Conjugate forced convection heat transfer from a heated flat plate of finite thickness and temperature- dependent thermal conductivity. Heat Transf Eng 35:863–874. https://doi.org/10.1080/01457632.2014.852896

    Article  Google Scholar 

  147. Ortega A, Ramanathan S (2003) On the use of point source solutions for forced air cooling of electronic components—Part II: conjugate forced convection from a discrete rectangular source on a thin conducting plate. J Electron Packag 125:235. https://doi.org/10.1115/1.1569507

    Article  Google Scholar 

  148. Sparrow EM, Chyu MK (1982) Conjugate forced convection-conduction analysis of heat transfer in a plate fin. J Heat Transf 87:421–422. https://doi.org/10.1115/1.3245055

    Article  Google Scholar 

  149. Sunden B (1985) The effect of prandtl number on conjugate heat transfer from rectangular fins. Int Commun Heat Mass Transf 12:225–232. https://doi.org/10.1016/0735-1933(85)90045-4

    Article  Google Scholar 

  150. Sunden B (1989) Analysis of conjugated laminar and turbulent forced convection- conduction heat transfer of a plate fin. Int Commun Heat Ans Mass Transf 16:821–831. https://doi.org/10.1016/0735-1933(89)90008-0

    Article  Google Scholar 

  151. Huang M-J, Chen C-K (1987) Conjugate forced convection-conduction plate fin in power law fluids. Int Commun Heat Ans Mass Transf 14:371–380. https://doi.org/10.1016/0735-1933(87)90058-3

    Article  Google Scholar 

  152. Hsiao K, Hsu C (2009) Conjugate heat transfer of forced convection with viscous dissipation for visco-elastic fluid past a flat plate fin. Int Conf Comput Exp Eng Sci 9:3–21. https://doi.org/10.3970/icces.2009.009.003

    Article  Google Scholar 

  153. Jilani G, Jayaraj S, Adeel Ahmad M (2001) Conjugate forced convection-conduction heat transfer analysis of a heat generating vertical cylinder. Int J Heat Mass Transf 45:331–341. https://doi.org/10.1016/S0017-9310(01)00140-5

    Article  MATH  Google Scholar 

  154. Ramis MK, Jilani G, Jahangeer S (2008) Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation. Int J Heat Mass Transf 51:517–525. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.019

    Article  MATH  Google Scholar 

  155. Ramis MK, Jilani G (2009) Numerical study of a nuclear fuel element dissipating fission heat into its surrounding fluid medium. Int J Heat Mass Transf 52:5005–5012. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.035

    Article  MATH  Google Scholar 

  156. Ramis MK, Jilani G (2010) Heat and fluid flow characteristics of liquid sodium flowing past a nuclear fuel element with non-uniform energy generation. Int J Heat Mass Transf 53:1682–1690. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.021

    Article  MATH  Google Scholar 

  157. Razak RKA, Mohammed S, Ramis MK (2017) Numerical investigation of Prandtl number effect on heat transfer and fluid flow characteristics of a nuclear fuel element. Nucl Energy Technol 3:81–91. https://doi.org/10.1016/j.nucet.2017.04.002

    Article  Google Scholar 

  158. Jahangeer S, Ramis MK, Jilani G (2007) Conjugate heat transfer analysis of a heat generating vertical plate. Int J Heat Mass Transf 50:85–93. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.042

    Article  MATH  Google Scholar 

  159. Barozzi GS, Pagliarini G (1985) A method to solve conjugate heat transfer problems: the case of fully developed laminar flow in a pipe. ASME J Heat Transf 107:77–83

    Article  Google Scholar 

  160. Bilir Ş (1995) Laminar flow heat transfer in pipes including two-dimensional wall and fluid axial conduction. Int J Heat Mass Transf 38:1619–1625. https://doi.org/10.1016/0017-9310(94)00269-2

    Article  MATH  Google Scholar 

  161. Wang M, Georgiadis JG (1996) Conjugate forced convection in crossflow over a cylinder array with volumetric heating. Int J Heat Mass Transf 39:1351–1361. https://doi.org/10.1016/0017-9310(95)00217-0

    Article  MATH  Google Scholar 

  162. Al-Zaharnah IT, Yilbas BS, Hashmi MSJ (2000) Conjugate heat transfer in fully developed laminar pipe flow and thermally induced stresses. Comput Methods Appl Mech Eng 190:1091–1104. https://doi.org/10.1016/S0045-7825(99)00467-3

    Article  MATH  Google Scholar 

  163. Alves TA, Altemani CAC (2011) Conjugate cooling of a protruding heater in a channel with distinct flow constraints. Glob J Res Eng 13:278–286. https://doi.org/10.1590/s1678-58782011000300003

    Article  Google Scholar 

  164. Jagad PI, Puranik BP, Date AW (2012) An iterative procedure for the evaluation of a conjugate condition in heat transfer problems. Numer Heat Transf Part A Appl 61:353–380. https://doi.org/10.1080/10407782.2012.648016

    Article  Google Scholar 

  165. Olakoyejo OT, Bello-Ochende T, Meyer JP (2012) Constructal conjugate cooling channels with internal heat generation. Int J Heat Mass Transf 55:4385–4396. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.007

    Article  Google Scholar 

  166. Bello-Ochende T, Olakoyejo OT, Meyer JP, Bejan A, Lorente S (2013) Constructal flow orientation in conjugate cooling channels with internal heat generation. Int J Heat Mass Transf 57:241–249. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.021

    Article  Google Scholar 

  167. Li HY, Yap YF, Lou J, Chai JC, Shang Z (2015) Numerical investigation of conjugated heat transfer in a channel with a moving depositing front. Int J Therm Sci 88:136–147. https://doi.org/10.1016/j.ijthermalsci.2014.09.017

    Article  Google Scholar 

  168. Huang SM, Zhang LZ, Yang M (2013) Conjugate heat and mass transfer in membrane parallel-plates ducts for liquid desiccant air dehumidification: effects of the developing entrances. J Membr Sci 437:82–89. https://doi.org/10.1016/j.memsci.2013.02.048

    Article  Google Scholar 

  169. Mohammad Samee AD, Afzal A, Razak RKA, Ramis MK (2018) Effect of Prandtl number on the average exit temperature of coolant in a heat-generating vertical parallel plate channel: a conjugate analysis. Heat Transf Asian Res. https://doi.org/10.1002/htj.21330

    Article  Google Scholar 

  170. Chiu WKS, Richards CJ, Jaluria Y (2001) Experimental and numerical study of conjugate heat transfer in a horizontal channel heated from below. J Heat Transf 123:688. https://doi.org/10.1115/1.1372316

    Article  Google Scholar 

  171. Rajesh Kanna P, Das MK (2006) Conjugate heat transfer study of backward-facing step flow—a benchmark problem. Int J Heat Mass Transf 49:3929–3941. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.058

    Article  MATH  Google Scholar 

  172. Ramadhyani S, Moffatt DF, Incropera FP (1985) Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. Int J Heat Mass Transf 28:1945–1952. https://doi.org/10.1016/0017-9310(85)90216-9

    Article  Google Scholar 

  173. Sugavanam R, Ortega A, Choi CY (1995) Numerical heat transfer, Part A : applications interaction of surface radiation with conduction and convection from a vertical channel with multiple discrete heat sources in the left wall. Int J Heat Mass Transf 38:2969–2984. https://doi.org/10.1016/0017-9310(95)00039-C

    Article  MATH  Google Scholar 

  174. Habeeb S (2007) Investigation of heat transfer phenomena and flow behavior around electronic chip. Al-Khwarizmi Eng J; 3:17–31. http://www.iasj.net/iasj?func=fulltext&aId=2329

  175. Cheng YP, Lee TS, Low HT (2008) Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle. Appl Therm Eng 28:1826–1833. https://doi.org/10.1016/j.applthermaleng.2007.11.008

    Article  Google Scholar 

  176. Juncu G (2005) Unsteady forced convection heat/mass transfer from a flat plate. Heat Mass Transf Und Stoffuebertragung 41:1095–1102. https://doi.org/10.1007/s00231-005-0641-x

    Article  Google Scholar 

  177. Juncu G (2008) Unsteady conjugate forced convection heat / mass transfer from a finite flat plate. Int J Therm Sci 47:972–984. https://doi.org/10.1016/j.ijthermalsci.2007.09.002

    Article  Google Scholar 

  178. Kanna PR, Das MK (2005) Conjugate forced convection heat transfer from a flat plate by laminar plane wall jet flow. Int J Heat Mass Transf 48:2896–2910. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.033

    Article  MATH  Google Scholar 

  179. Kanna PR, Das MK (2009) Effect of geometry on the conjugate heat transfer of wall jet flow over a backward-facing step. J Heat Transf 131:114501. https://doi.org/10.1115/1.2717251

    Article  Google Scholar 

  180. He L, Oldfield MLG (2010) Unsteady conjugate heat transfer modeling. J Turbomach 133:31022. https://doi.org/10.1115/1.4001245

    Article  Google Scholar 

  181. Lin TF, Kuo JC (1988) Transient conjugated heat-transfer in fully-developed laminar pipe flows. Int J Heat Mass Transf 31:1093–1102. https://doi.org/10.1016/0017-9310(88)90097-x

    Article  MATH  Google Scholar 

  182. Yan WM (1993) Transient conjugated heat transfer in channel flows with convection from the ambient. Int J Heat Mass Transf 36:1295–1301. https://doi.org/10.1016/S0017-9310(05)80098-5

    Article  MathSciNet  Google Scholar 

  183. Lee K-T, Yan W-M (1993) Transient conjugated forced convection heat transfer with fully developed laminar flow in pipes. Numer Heat Transf Part A Appl 23:341–359. https://doi.org/10.1080/10407789308913676

    Article  Google Scholar 

  184. Nigen JS, Amon CH (1995) Effect of material composition and localized heat generation on time-dependent conjugate heat transport. Int J Heat Mass Transf 38:1565–1576

    Article  Google Scholar 

  185. Moraga NO, Medina EE (2000) Conjugate forced convection and heat conduction with freezing of water content in a plate shaped food. Int J Heat Mass Transf 43:53–67. https://doi.org/10.1016/S0017-9310(99)00119-2

    Article  MATH  Google Scholar 

  186. Bilir Ş (2002) Transient conjugated heat transfer in pipes involving two-dimensional wall and axial fluid conduction. Int J Heat Mass Transf 45:1781–1788. https://doi.org/10.1016/S0017-9310(01)00270-8

    Article  MATH  Google Scholar 

  187. Bilir Ş̧, Ateş A (2003) Transient conjugated heat transfer in thick walled pipes with convective boundary conditions. Int J Heat Mass Transf 46:2701–2709. https://doi.org/10.1016/s0017-9310(03)00032-2

    Article  MATH  Google Scholar 

  188. Ate A, Darici S, Bilir E (2010) Unsteady conjugated heat transfer in thick walled pipes involving two-dimensional wall and axial fluid conduction with uniform heat flux boundary condition. Int J Heat Mass Transf 53:5058–5064. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.059

    Article  MATH  Google Scholar 

  189. Abu-Hijleh BA, Al-Nimr MA, Hader MA (2003) Thermal equilibrium in transient conjugated forced-convection channel flow. Numer Heat Transf Part A Appl 43:327–339. https://doi.org/10.1080/10407780307307

    Article  Google Scholar 

  190. Lin DTW, Yan WM, Li HY (2008) Inverse problem of unsteady conjugated forced convection in parallel plate channels. Int J Heat Mass Transf 51:993–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.022

    Article  MATH  Google Scholar 

  191. Zueco J (2008) Unsteady conjugate problem of a dissipative fluid in a horizontal channel with a periodic variation temperature. Meccanica 43:37–46. https://doi.org/10.1007/s11012-007-9092-4

    Article  MATH  Google Scholar 

  192. Arici ME, Aydin O (2009) Conjugate heat transfer in thermally developing laminar flow with viscous dissipation effects. Heat Mass Transf 45:1199–1203. https://doi.org/10.1007/s00231-009-0494-9

    Article  Google Scholar 

  193. Mohammadi Pirouz M, Farhadi M, Sedighi K, Nemati H, Fattahi E (2011) Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Sci Iran 18:213–221. https://doi.org/10.1016/j.scient.2011.03.016

    Article  Google Scholar 

  194. Oliveria LS, Haghighi K (1998) Conjugate heat and mass transfer in convective drying of porous media. Numer Heat Transf Part A 34:105–117. https://doi.org/10.1080/10407789808913980

    Article  Google Scholar 

  195. Murugesan K, Suresh HN, Seetharamu KN, Aswatha Narayana PA, Sundararajan T (2001) A theoretical model of brick drying as a conjugate problem. Int J Heat Mass Transf 44:4075–4086. https://doi.org/10.1016/S0017-9310(01)00065-5

    Article  MATH  Google Scholar 

  196. De Bonis MV, Ruocco G (2008) A generalized conjugate model for forced convection drying based on an evaporative kinetics. J Food Eng 89:232–240. https://doi.org/10.1016/j.jfoodeng.2008.05.008

    Article  Google Scholar 

  197. Lamnatou C, Papanicolaou E, Belessiotis VG, Kyriakis N (2009) Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numer Heat Transf Part A 56:379–405. https://doi.org/10.1080/10407780903244353

    Article  Google Scholar 

  198. Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2010) Numerical study of the interaction among a pair of blunt plates subject to convective drying—A conjugate approach. Int J Therm Sci 49:2467–2482. https://doi.org/10.1016/j.ijthermalsci.2010.06.017

    Article  Google Scholar 

  199. Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2010) Finite-volume modelling of heat and mass transfer during convective drying of porous bodies—non-conjugate and conjugate formulations involving the aerodynamic effects. Renew Energy 35:1391–1402. https://doi.org/10.1016/j.renene.2009.11.008

    Article  Google Scholar 

  200. Malik AH, Alvi MSI, Khushnood S, Mahfouz FM, Ghauri MKK, Shah A (2012) Experimental study of conjugate heat transfer within a bottom heated vertical concentric cylindrical enclosure. Int J Heat Mass Transf 55:1154–1163. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.055

    Article  Google Scholar 

  201. Cukurel B, Arts T, Selcan C (2012) Conjugate heat transfer characterization in cooling channels. J Therm Sci 21:286–294. https://doi.org/10.1007/s11630-012-0546-1

    Article  Google Scholar 

  202. Yusoff S, Mohamed M, Ahmad KA, Abdullah MZ, Mujeebu MA, Mohd Ali Z et al (2009) 3-D conjugate heat transfer analysis of PLCC packages mounted in-line on a Printed Circuit Board. Int Commun Heat Mass Transf 36:813–819. https://doi.org/10.1016/j.icheatmasstransfer.2009.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ramis.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Samee, A.D.M., Razak, R.K.A. et al. Steady and Transient State Analyses on Conjugate Laminar Forced Convection Heat Transfer. Arch Computat Methods Eng 27, 135–170 (2020). https://doi.org/10.1007/s11831-018-09303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-09303-x

Navigation