Skip to main content

Advertisement

Log in

A Review on Application of Soft Computing Techniques in Machining of Particle Reinforcement Metal Matrix Composites

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper, a wide literature review of soft computing methods in conventional machining processes of metal matrix composites is carried out. The tool wear, cutting force along with surface quality are presented in the different types of machining processes and examined thoroughly. Summary of the different particular soft computing approaches in machining such as turning, milling, drilling and grinding operations are thoroughly discussed. Furthermore, this work put emphases on the optimization and modeling of the machining process. The study will emphasis on the most general methods used by researchers in literature for developing the statistical and mathematical modeling using soft computing approaches including, genetic algorithm, response surface methodology, fuzzy logic, artificial neural network, Taguchi method and particle swarm optimization. In last section the comprehensive open issues and conclusion are presented for application of soft computing techniques in machining of metal matrix composite performance prediction and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156

    Google Scholar 

  2. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2):319–334

    Google Scholar 

  3. El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: part IV. Residual stresses in the machined workpiece. J Mater Process Technol 152:23–34

    Google Scholar 

  4. Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259:1225–1234

    Google Scholar 

  5. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Appl Sci Manuf 40:1231–1239

    Google Scholar 

  6. Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tool Manuf 45:389–398

    Google Scholar 

  7. D’Errico GE, Calzavarini R (2001) Turning of metal matrix composites. J Mater Process Technol 119(1–3):257–260

    Google Scholar 

  8. Davim JP (2010) Machining composite materials. ISTE-Wiley, London

    Google Scholar 

  9. Davim JP (2011) Machining of metal matrix composites. Springer, London

    Google Scholar 

  10. Srivastava AK, Dixit AR, Tiwari S (2018) A review on the intensification of metal matrix composites and its nonconventional machining. Sci Eng Compos Mater 25(2):213–228

    Google Scholar 

  11. Nicholls CJ, Boswell B, Davies IJ, Islam MN (2017) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9–12):2429–2441

    Google Scholar 

  12. Hung NP, Zhong CH (1996) Cumulative tool wear in machining metal matrix composites part I: modelling. J Mater Process Technol 58(1):109–113

    Google Scholar 

  13. Sekhar R, Singh TP (2015) Mechanisms in turning of metal matrix composites: a review. J Mater Res Technol 4(2):197–207

    Google Scholar 

  14. Pugazhenthi A, Kanagaraj G, Dinaharan I, Selvam JDR (2018) Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool. Measurement 121:39–46

    Google Scholar 

  15. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Google Scholar 

  16. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156

    Google Scholar 

  17. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46(5–8):445–464

    Google Scholar 

  18. Tamang SK, Chandrasekaran M (2015) Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Adv Prod Eng Manag 10(2):59

    Google Scholar 

  19. Davim JP (2009) Machining fundamentals and recent advances. Springer, Berlin

    Google Scholar 

  20. Di Ilio A, Paoletti A (2012) Machinability aspects of metal matrix composites. In: Davim JP (ed) Machining of metal matrix composites. Springer, London

    Google Scholar 

  21. Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer, Berlin

    Google Scholar 

  22. Deb S, Dixit US (2008) Intelligent machining: computational methods and optimization. Machining. Springer, London, pp 329–358

    Google Scholar 

  23. Goldberg GE (1989) Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading, MA

    MATH  Google Scholar 

  24. Wang ZG, Wong YS, Rahman M (2004) Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. Int J Adv Manuf Technol 24(9–10):727–732

    Google Scholar 

  25. Gopalakannan S, Senthilvelan T (2013) Application of response surface method on machining of Al-SiC nano-composites. Measurement 46(8):2705–2715

    Google Scholar 

  26. Lakshminarayanan AK, Balasubramanian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans Nonferrous Met Soc China 19(1):9–18

    Google Scholar 

  27. Joardar H, Das NS, Sutradhar G, Singh S (2014) Application of response surface methodology for determining cutting force model in turning of LM6/SiCp metal matrix composites. Measurement 47:452–464

    Google Scholar 

  28. Srinivasan A, Arunachalam RM, Ramesh S, Senthilkumaar JS (2012) Machining performance study on metal matrix composites-a response surface methodology approach. Am J Appl Sci 9(4):478–483

    Google Scholar 

  29. Suresh P, Marimuthu K, Ranganathan S, Rajmohan T (2014) Optimization of machining parameters in turning of Al-SiC-Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans Nonferrous Met Soc China 24(9):2805–2814

    Google Scholar 

  30. Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite. J Mater Process Technol 173(3):337–344

    Google Scholar 

  31. Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composites. J Mater Process Technnol 173(3):337–344

    Google Scholar 

  32. Manna A, Bhattacharyya B (2006) Taguchi method based optimization of cutting tool flank wear during turning of PR-Al/20vol% SiC-MMC. Int J Mach Mach Mater 1(4):488–499

    Google Scholar 

  33. Rogov VA, Siamak G (2013) Optimization of surface roughness and vibration in turning of aluminum alloy AA2024 using Taguchi technique. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 7(11):2330–2339

    Google Scholar 

  34. Sriprateep K, Patumchat P, Theansuwan W (2011) Application of Taguchi method in the optimization of cutting parameters for turning metal matrix composite. Adv Mater Res, vol 189. Trans Tech Publications, Zurich, pp 3056–3060

    Google Scholar 

  35. Davim JP (2003) Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3):340–344

    Google Scholar 

  36. Muthukrishnan N (2009) Machinability studies and ANN modeling of turning Al-SiC (10p) metal matrix composites. i-Manager’s J Fut Eng Technol 5(1):67

    Google Scholar 

  37. Xu L, Davim JP (2008) Modelling cutting power and tool wear in turning of aluminium matrix composites using artificial neural networks. Int J Mater Prod Technol 32(2–3):333–342

    Google Scholar 

  38. Jeyapaul R, Sivasankar S (2011) Optimization and modeling of turning process for aluminium-silicon carbide composite using artificial neural network models. In: 2011 IEEE international conference on industrial engineering and engineering management (IEEM). IEEE, pp 773–778

  39. Shabani MO, Mazahery A, Rahimipour MR, Razavi M (2012) FEM and ANN investigation of A356 composites reinforced with B4C particulates. J King Saud Univ Eng Sci 24(2):107–113

    Google Scholar 

  40. Ozyurek D, Kalyon A, Yildirim M, Tuncay T, Ciftci I (2014) Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks. Mater Des 63:270–277

    Google Scholar 

  41. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks (ICNN’95), Perth, Australia

  42. Srinivas J, Giri R, Yang SH (2009) Optimization of multi-pass turning using particle swarm intelligence. Int J Adv Manuf Technol 40:56–66. https://doi.org/10.1007/s00170-007-1320-5

    Article  Google Scholar 

  43. Natarajan U, Saravanan R, Periasamy VM (2006) Application of particle swarm optimization in artificial neural network for prediction of tool life. Int J Adv Manuf Technol 28:1084–1088. https://doi.org/10.1007/s00170-004-2460-5

    Article  Google Scholar 

  44. Ghosh G, Mandal P, Mondal SC (2017) Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization. Int J Adv Manuf Technol 100(5–8):1223–1242

    Google Scholar 

  45. Shrivastava PK, Pandey AK (2018) Parametric optimization of multiple quality characteristics in laser cutting of inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm. Infrared Phys Technol 91:220–232

    Google Scholar 

  46. Petkovic D, Radovanovic M (2013) Using genetic algorithms for optimization of turning machining process. J Eng Stud Res 19(1):47

    Google Scholar 

  47. Oktem H, Erzurumlu T, Kutaran H (2005) Applications of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16. https://doi.org/10.1016/j.jmatprotec.2005.04.096

    Article  Google Scholar 

  48. Laghari RA, Li J, Xie Z, Wang SQ (2018) Modeling and optimization of tool wear and surface roughness in turning of Al/SiCp using response surface methodology. 3D Res 9(4):46

    Google Scholar 

  49. Nair AT, Makwana AR, Ahammed MM (2014) The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Sci Technol 69(3):464–478

    Google Scholar 

  50. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149

    Google Scholar 

  51. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Google Scholar 

  52. Natarajan U, Periasamy VM, Saravanan R (2007) Application of particle swarm optimisation in artificial neural network for the prediction of tool life. Int J Adv Manuf Technol 31(9–10):871–876

    Google Scholar 

  53. Radhakrishnan T, Nandan U (2005) Milling force prediction using regression and neural networks. J Intell Manuf 16:93–102. https://doi.org/10.1007/s10845-005-4826-4

    Article  Google Scholar 

  54. Koker R, Altinkok N, Demir A (2007) Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Des 28(2):616–627

    Google Scholar 

  55. Shabani MO, Mazahery A (2012) Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites. Appl Math Model 36(11):5455–5465

    Google Scholar 

  56. Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiCMMC with ANOVA and ANN analysis. J Mater Process Technol 209(1):225–232

    Google Scholar 

  57. Lin SC, Ting CJ (1999) Drill wear monitoring using neural networks. Int J Adv Manuf Technol 36:465–475

    Google Scholar 

  58. Taso CC, Hochang H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol 203:342–348. https://doi.org/10.1016/j.jmatprotec.2006.04.126

    Article  Google Scholar 

  59. Sahoo AK, Pradhan S, Rout AK (2013) Development and machinability assessment in turning Al/SiCp-metal matrix composites with multilayer coated carbide inset using Taguchi and statistical techniques. Arch Civil Mech Eng 13(1):27–35

    Google Scholar 

  60. Rajarasalnath S, Balasubramanian K, Rajeswari N (2015) Multi-objective optimization problems in Taguchi parameter design—a literature review. Applied Mechanics and Materials, vol 813. Trans Tech Publications, Zurich, pp 1188–1192

    Google Scholar 

  61. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  62. Azadegan A, Porobic L, Ghazinoory S, Samouei P, Kheirkhah AS (2011) Fuzzy logic in manufacturing: a review of literature and a specialized application. Int J Prod Econ 132(2):258–270

    Google Scholar 

  63. Hashmi K, Graham ID, Mills B (2000) Fuzzy logic based data selection for the drilling process. J Mater Process Technol 108:55–61. https://doi.org/10.1016/S0924-0136(00)00597-5

    Article  Google Scholar 

  64. Rajmohan T, Palanikumar K, Prakash S (2013) Grey-fuzzy algorithm to optimize machining parameters in drilling of hybrid metal matrix composites. Compos B Eng 50:297–308

    Google Scholar 

  65. Markopoulos AP, Habrat W, Galanis NI, Karkalos NE (2016) Modelling and optimization of machining with the use of statistical methods and soft computing. Design of experiments in production engineering. Springer, Cham, pp 39–88

    Google Scholar 

  66. Kanta Das D, Mishra PC, Singh S, Thakur RK (2015) Tool wear in turning ceramic reinforced aluminum matrix composites—a review. J Compos Mater 49(24):2949–2961

    Google Scholar 

  67. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50(1–2):15–34

    Google Scholar 

  68. Muthukrishnan N, Murugan M, Prahlada Rao K (2008) Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int J Adv Manuf Technol 39:211–218. https://doi.org/10.1007/s00170-007-1220-8

    Article  Google Scholar 

  69. Niknam SA, Kamalizadeh S, Asgari A, Balazinski M (2018) Turning titanium metal matrix composites (Ti-MMCs) with carbide, CBN inserts. Int J Adv Manuf Technol 97(1–4):253–265

    Google Scholar 

  70. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Google Scholar 

  71. Das D, Thakur RK, Chaubey AK, Sahoo AK (2018) Optimization of machining parameters and development of surface roughness models during turning Al-based metal matrix composite. Mat Today Proc 5(2):4431–4437

    Google Scholar 

  72. Durante S, Rutelli G, Rabezzana F (1997) Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol 94:632–640

    Google Scholar 

  73. Hung NP, Venkatesh VC, Loh NL (1999) Machining of metal matrix composites. Manuf Eng Mater Process 53:295–356

    Google Scholar 

  74. Jiuhua X, Dunwen Z, Mingda Y, Yue TM (1995) Machining of metal matrix composites. Trans Nanjing Univ Aeronaut Astronaut 12(2):161–167

    Google Scholar 

  75. Karabulut Ş (2015) Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66:139–149

    Google Scholar 

  76. Mukhopadhyay CK, Jayakumar T, Raj B, Venugopal S (2012) Statistical analysis of acoustic emission signals generated during turning of a metal matrix composite. J Braz Soc Mech Sci Eng 34(2):145–154

    Google Scholar 

  77. Tamang SK, Chandrasekaran M (2015) Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Adv Prod Eng Manag 10(2):59

    Google Scholar 

  78. Seeman M, Ganesan G, Karthikeyan R, Velayudham A (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48(5–8):613–624

    Google Scholar 

  79. Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254

    Google Scholar 

  80. Lin JT, Bhattacharyya D, Kecman V (2003) Multiple regression and neural networks analyses in composites machining. Compos Sci Technol 63(3–4):539–548

    Google Scholar 

  81. Joardar H, Das NS, Sutradhar G (2011) An experimental study of effect of process parameters in turning of LM6/SiC P metal matrix composite and its prediction using response surface methodology. Int J Eng Sci Technol 3(8):132–141

    Google Scholar 

  82. Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65:166–180

    Google Scholar 

  83. Paturi UMR, Devarasetti H, Fadare DA, Narala SKR (2018) Application of artificial neural network and response surface methodology in modeling of surface roughness in WS2 solid lubricant assisted MQL turning of Inconel 718. In: IOP conference series: materials science and engineering, vol 346(1). IOP Publishing, pp 012085

  84. Ramanujam R, Muthukrishnan N, Raju R (2011) Optimization of cutting parameters for turning Al-SiC (10p) MMC using ANOVA and grey relational analysis. Int J Precis Eng Manuf 12(4):651–656

    Google Scholar 

  85. Tamang S, Chandrasekaran M (2014) Application of grey fuzzy logic for simultaneous optimization of surface roughness and metal removal rate in turning Al-SiCp metal matrix composites. In: 5th international & 26th all India manufacturing technology, design and research conference (AIMTDR 2014), p 832-1

  86. Kalaichelvi V, Karthikeyan R, Sivakumar D, Srinivasan V (2012) Tool wear classification using fuzzy logic for machining of al/sic composite material. Model Numer Simul Mater Sci 2(02):28

    Google Scholar 

  87. Tamang S, Chandrasekaran M (2014) Experimental investigation and development of multi response ANN modeling in turning Al-SiCp MMC using polycrystalline diamond tool. Int J Curr Eng Technol 2:1–8

    Google Scholar 

  88. Karabulut Ş, Gökmen U, Çinici H (2018) Optimization of machining conditions for surface quality in milling AA7039-based metal matrix composites. Arab J Sci Eng 43(3):1071–1082

    Google Scholar 

  89. Pramanik A, Basak AK, Dong Y, Shankar S, Littlefair G (2018) Milling of nanoparticles reinforced Al-based metal matrix composites. J Compos Sci 2(1):13

    Google Scholar 

  90. Das D, Mishra P, Singh S, Chaubey A, Routara B (2018) Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization. Int J Ind Eng Comput 9(4):551–564

    Google Scholar 

  91. Okokpujie IP, Ajayi OO, Afolalu SA, Abioye AA, Salawu EY, Udo M (2018) Modeling and optimization of surface roughness in end milling of aluminium using least square approximation method and response surface methodology. Int J Mech Eng Technol (IJMET) 9(1):587–600

    Google Scholar 

  92. Devarasiddappa D, Chandrasekaran M, Mandal A (2012) Artificial neural network modelling for predicting surface roughness in end milling of Al-SiCp metal matrix composites and its evaluation. J Appl Sci 12(10):955–962

    Google Scholar 

  93. Premnath AA, Alwarsamy T, Rajmohan T (2012) Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Mater Manuf Process 27(10):1035–1044

    Google Scholar 

  94. Arokiadass R, Palaniradja K, Alagumoorthi N (2012) Tool flank wear model and parametric optimization in end milling of metal matrix composite using carbide tool: response surface methodology approach. Int J Ind Eng Comput 3(3):511–518

    Google Scholar 

  95. Premnath AA, Suryatheja P, Srinath A, Karthikeyan S (2015) Analysis of tool wear while milling hybrid metal matrix composites. Appl Mech Mater 813:279

    Google Scholar 

  96. Santhanakrishnan M, Sivasakthivel PS, Sudhakaran R (2017) Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. J Braz Soc Mech Sci Eng 39(2):487–496

    Google Scholar 

  97. Karabulut Ş (2015) Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66:139–149

    Google Scholar 

  98. Arokiadass R, Palaniradja K, Alagumoorthi N (2012) A study on tool wear and surface roughness in end milling of particulate aluminum metal matrix composites: application of response surface methodology. J Comput Appl Res Mech Eng 2(1):1–12

    Google Scholar 

  99. Subramanian M, Sakthivel M, Sooryaprakash K, Sudhakaran R (2013) Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm. Proc Eng 64:690–700

    Google Scholar 

  100. Jeyakumar S, Marimuthu K, Ramachandran T (2013) Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J Mech Sci Technol 27(9):2813–2822

    Google Scholar 

  101. Malghan RL, Rao KMC, Shettigar AK, Rao SS, D’Souza RJ (2017) Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. J Braz Soc Mech Sci Eng 39(9):3541–3553

    Google Scholar 

  102. Rajeswari B, Amirthagadeswaran KS (2017) Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis. Measurement 105:78–86

    Google Scholar 

  103. Subbaiah AR, Sivaram NM, Senthil P (2017) Effect of milling parameters on surface quality of AA6063-T6 aluminium alloy during high speed CNC face milling. Int J Chem Technol Res 10(3):410–421

    Google Scholar 

  104. Subbaiah AR, Sivaram NM, Senthil P (2017) Parametric optimization of high speed CNC turning operation for improving the surface quality of (AA6063-T6) aluminium alloy components. Int J Chem Technol Res 10(2):923–932

    Google Scholar 

  105. Monaghan J, O’reilly P (1992) The drilling of an Al/SiC metal-matrix composite. J Mater Process Technol 33(4):469–480

    Google Scholar 

  106. Ramulu M, Rao PN, Kao H (2002) Drilling of (Al2O3) p/6061 metal matrix composites. J Mater Process Technol 124(1–2):244–254

    Google Scholar 

  107. Waleed WA, Chathriyan A, Vimal SSR (2018) Experimental investigation on the influence of process parameters in thermal drilling of metal matrix composites. FME Trans 46(2):171–176

    Google Scholar 

  108. Xiang J, Xie L, Gao F, Yi J, Pang S, Wang X (2018) Diamond tools wear in drilling of SiCp/Al matrix composites containing Copper. Ceram Int 44(5):5341–5351

    Google Scholar 

  109. Rajmohan T, Palanikumar K (2013) Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46(4):1470–1481

    Google Scholar 

  110. Davim JP (2003) Study of drilling metal-matrix composites based on the Taguchi techniques. J Mater Process Technol 132:250–254. https://doi.org/10.1016/S0924-0136(02)00935-4

    Article  Google Scholar 

  111. Abidin NWZ, Ab Rashid MFF, Mohamed NMZN (2017) A review of multi-holes drilling path optimization using soft computing approaches. Arch Comput Methods Eng 26(1):107–118

    Google Scholar 

  112. Xiang J, Xie L, Gao F, Zhang Y, Yi J, Wang T, Pang S, Wang X (2018) On multi-objective based constitutive modelling methodology and numerical validation in small-hole drilling of Al6063/SiCp composites. Materials 11(1):97

    Google Scholar 

  113. Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: microstructure. Compos Sci Technol 64(2):299–308

    Google Scholar 

  114. Premnath AA, Alwarsamy T, Sugapriya K (2014) A comparative analysis of tool wears prediction using response surface methodology and artificial neural networks. Aust J Mech Eng 12(1):38–48

    Google Scholar 

  115. Weinert K, Lange M, Schroer M (2000) Machining of light-metal matrix composites. In: Kainer KU (ed) Magnesium alloys and their applications. Wiley, Weinheim

    Google Scholar 

  116. Coelho RT, Aspinwall DK, Wise MLH (1994) Drilling and reaming aluminium-based metal matrix composites (MMC) using PCD tooling. In: Transactions of NAMRI/SME

  117. Di Ilio A, Paoletti A (2012) Machinability aspects of metal matrix composites. In: Davim JP (ed) Machining of metal matrix composites. Springer, London

    Google Scholar 

  118. Mayyas A, Qasaimeh A, Alzoubi K, Lu S, Hayajneh MT, Hassan AM (2012) Modeling the drilling process of aluminum composites using multiple regression analysis and artificial neural networks. J Miner Mater Charact Eng 11(10):1039

    Google Scholar 

  119. Dhavamani C, Alwarsamy T (2012) Optimization of machining parameters for aluminum and silicon carbide composite using genetic algorithm. Proc Eng 38:1994–2004

    Google Scholar 

  120. Srinivasan VKMMS, Kokilavani KRK (2017) Optimization of cutting parameters for aluminum and silicon carbide composite using Taguchi’s techniques. National Conference on Recent Advancements in Mechanical Engineering (RAME’17), pp 43–47

  121. Haq AN, Marimuthu P, Jeyapaul R (2008) Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int J Adv Manuf Technol 37(3–4):250–255

    Google Scholar 

  122. Rajmohan T, Palanikumar K, Prakash S (2013) Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites. Compos B Eng 50:297–308

    Google Scholar 

  123. Karthikeyan R, Jaiganesh S, Pai BC (2002) Optimization of drilling characteristics for Al/SiC p composites using fuzzy/GA. Met Mater Int 8(2):163–168

    Google Scholar 

  124. Mohan NS, Kulkarni SM (2018) Influence of drilling parameters on torque during drilling of GFRP composites using response surface methodology. J Phys Conf Ser 953(1):012031

    Google Scholar 

  125. Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol 203(1–3):342–348

    Google Scholar 

  126. Chaudhary G, Kumar M, Verma S, Srivastav A (2014) Optimization of drilling parameters of hybrid metal matrix composites using response surface methodology. Proc Mater Sci 6:229–237

    Google Scholar 

  127. Li J, Du J, Yao Y, Hao Z, Liu X (2014) Experimental study of machinability in mill-grinding of SiCp/Al composites. J Wuhan Univ Technol Mater Sci Ed 29(6):1104–1110

    Google Scholar 

  128. Li JG, Du JG, Yao YX (2012) A comparison of dry and wet machining of SiC particle-reinforced aluminum metal matrix composites. Advanced Materials Research, vol 500. Trans Tech Publications, Zurich, pp 168–173

    Google Scholar 

  129. Kwak JS, Kim YS (2008) Mechanical properties and grinding performance on aluminum-based metal matrix composites. J Mater Process Technol 201(1–3):596–600

    Google Scholar 

  130. Li J, Laghari RA (2018) A review on machining and optimization of particle-reinforced metal matrix composites. Int J Adv Manuf Technol 100(9–12):2929–2943

    Google Scholar 

  131. Manivannan I, Ranganathan S, Gopalakannan S, Suresh S (2018) Dry Sliding Wear behaviour of cast Al/Al203/Gr hybrid nano-composite using response surface methodology. In: IOP conference series: materials science and engineering, vol 390(1). IOP Publishing, p 012105

  132. Di Ilio A, Lambiase F, Paoletti A (2018) Grindability assessment of metal matrix composites. Proc CIRP 67:313–318

    Google Scholar 

  133. Liu C, Ding W, Yu T, Yang C (2018) Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precis Eng 51:68–77

    Google Scholar 

  134. Li JG, Du JG, Zhao H (2011) Experimental study on the surface roughness with mill-grinding SiC particle reinforced aluminum matrix composites. Advanced Materials Research, vol 188. Trans Tech Publications, Zurich, pp 203–207

    Google Scholar 

  135. Huang S, Yu X (2018) A study of grinding forces of SiCp/Al composites. Int J Adv Manuf Technol 94(9–12):3633–3639

    Google Scholar 

  136. Zhong Z (2002) Surface finish of precision machined advanced materials. J Mater Process Technol 122(2–3):173–178

    Google Scholar 

  137. Pai D, Rao SS, Shetty R (2011) Application of statistical tool for optimisation of specific cutting energy and surface roughness on surface grinding of Al-SiC35p composites. Int J Sci Stat Comput 2(1):16–32

    Google Scholar 

  138. Pai D, Rao S, Shetty R, Nayak R (2010) Application of response surface methodology on surface roughness in grinding of aerospace materials (6061Al-15Vol% SiC25p). APRN J Eng Appl Sci 5(6):23–28

    Google Scholar 

  139. Kwak JS, Chi LZ, Koo Y, Jeong YD, Ha MK (2006) Process parameter optimization for machining SiCp/Al-MMC using RSM and GA. Key engineering materials, vol 326. Trans Tech Publications, Zurich, pp 1213–1216

    Google Scholar 

  140. Chandrasekaran M, Devarasiddappa D (2014) Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al‐SiCp metal matrix composites and ANOVA analysis. Adv Prod Eng Manag 9(2):59–70

    Google Scholar 

  141. Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2012) Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms. J Braz Soc Mech Sci Eng 34(1):32–40

    Google Scholar 

  142. Liu C, Ding W, Li Z, Yang C (2017) Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm. Int J Adv Manuf Technol 89(5–8):2277–2285

    Google Scholar 

  143. Pal SK, Chakraborty D (2005) Surface roughness prediction in turning using artificial neural network. Neural Comput Appl 14:319–324

    Google Scholar 

  144. Dutta RK, Paul S, Chattopadyay AB (2000) Fuzzy controlled back propagation neural network for tool condition monitoring in face milling. Int J Prod Res 38(13):2989–3010

    Google Scholar 

  145. Dutta RK, Paul S, Chattopadyay AB (2006) The efficacy of back propagation neural network with delta bar delta learning in predicting the wear of carbide inserts in face milling. Int J Adv Manuf Technol 31:434–442

    Google Scholar 

  146. Kohli A, Dixit US (2005) A neural-network based methodology for the prediction of surface roughness in a turning process. Int J Adv Manuf Technol 25:118–129

    Google Scholar 

  147. Ghosh N, Ravi YB, Mukhopadyay S, Paul S, Mohanty AR, Chattopadyay AB (2007) Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech Syst Signal Process 21:466–479

    Google Scholar 

  148. Canakci A, Varol T, Ozsahin S (2013) Prediction of effect of volume fraction, compact pressure and milling time on properties of Al-Al 2 O 3 MMCs using neural networks. Met Mater Int 19(3):519–526

    Google Scholar 

  149. Basheer AC, Dabade UA, Joshi SS, Bhanuprasad VV, Gadre VM (2008) Modeling of surface roughness in precision machining of metal matrix composites using ANN. J Mater Process Technol 197(1–3):439–444

    Google Scholar 

  150. Tofigh AA, Rahimipour MR, Shabani MO, Alizadeh M, Heydari F, Mazahery A, Razavi M (2013) Optimized processing power and trainability of neural network in numerical modeling of Al matrix nano composites. J Manuf Process 15(4):518–523

    Google Scholar 

  151. Chungchoo C, Saini D (2002) On-line tool wear estimation in CNC turning operations using fuzzy neural network model. Int J Mach Tools Manuf 42:29–40

    Google Scholar 

  152. Lo SP (2003) An adaptive-network based fuzzy inference system for prediction of work piece surface roughness in end milling. J Mater Process Technol 142:665–675

    Google Scholar 

  153. Chen JC, Savage M (2001) A fuzzy-net-based multilevel in process surface roughness recognition system in milling operations. Int J Adv Manuf Technol 17:670–676

    Google Scholar 

  154. Samhouri MS, Surgenor BW (2005) Surface roughness in grinding: on-line prediction with adaptive neuro-fuzzy inference system. Trans NAMRI/SME 33:57–64

    Google Scholar 

  155. Elangovan R, Ravikumar MM (2016) Evaluation Of factors affecting PCD tool wear behavior of al-fly ash metal matrix composites by using design of experiments. Int J Mech Mechatron Eng 14(3):76–86

    Google Scholar 

  156. Abburi NR, Dixit US (2006) A knowledge based system for the prediction of surface roughness in turning process. Robot Comput Integr Manuf 22:363–372

    Google Scholar 

  157. Krishna MV, Xavior MA (2016) A new hybrid approach to optimize the end milling process for Al/SiC composites using RSM and GA. Indian J Sci Technol 9(30):1–7

    Google Scholar 

  158. Baradeswaran A, Elayaperumal A, Issac RF (2013) A statistical analysis of optimization of wear behaviour of al-al2o3 composites using taguchi technique. Proc Eng 64:973–982

    Google Scholar 

  159. Pang JS, Ansari MNM, Zaroog OS, Ali MH, Sapuan SM (2014) Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC J 10(2):138–144

    Google Scholar 

  160. Vamsi Krishna M, Anthony Xavior M (2015) Experiment and statistical analysis of end milling parameters for Al/SiC using response surface methodology. Int J Eng Technol 7:2274–2285

    Google Scholar 

  161. Öktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170(1–2):11–16

    Google Scholar 

  162. Saravanan I, Perumal AE, Vettivel SC, Selvakumar N, Baradeswaran A (2015) Optimizing wear behavior of TiN coated SS 316L against Ti alloy using response surface methodology. Mater Des 67:469–482

    Google Scholar 

  163. Sahoo AK, Pradhan S (2013) Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Measurement 46(9):3064–3072

    Google Scholar 

  164. Shetty R, Pai RB, Rao SS, Nayak R (2009) Taguchi’s technique in machining of metal matrix composites. J Braz Soc Mech Sci Eng 31(1):12–20

    Google Scholar 

  165. Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44(9):1697–1704

    Google Scholar 

  166. Mahapatra SS, Patnaik A (2009) Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design. Mater Des 30(8):2791–2801

    Google Scholar 

  167. Wang X, Jawahir IS (2005) Optimization of multi-pass turning operations using genetic algorithms for the selection of cutting conditions and cutting tools with tool-wear effect. Int J Prod Res 43:3543–3559

    MATH  Google Scholar 

  168. Gaitonde VN, Karnik SR, Davim JP (2009) Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos 28(20):2445–2457

    Google Scholar 

  169. Subramanian AVM, Nachimuthu MDG, Cinnasamy V (2017) Assessment of cutting force and surface roughness in LM6/SiCp using response surface methodology. J Appl Res Technol 15(3):283–296

    Google Scholar 

  170. Mandal N, Roy H, Mondal B, Murmu NC, Mukhopadhyay SK (2012) Mathematical modeling of wear characteristics of 6061 Al-alloy-SiCp composite Using response surface methodology. J Mater Eng Perform 21(1):17–24

    Google Scholar 

  171. Kamguem R, Djebara A, Songmene V (2013) Investigation on surface finish and metallic particle emission during machining of aluminum alloys using response surface methodology and desirability functions. Int J Adv Manuf Technol 69(5–8):1283–1298

    Google Scholar 

  172. Chandrasekaran M, Tamang S (2014) Desirability analysis and genetic algorithm approaches to optimize single and multi-response characteristics in machining Al-SiCp MMC. In: 5th international & 26th all India manufacturing technology, design and research conference, p 653-1

  173. Nwobi-Okoye CC, Ochieze BQ (2018) Age hardening process modeling and optimization of aluminum alloy A356/Cow horn particulate composite for brake drum application using RSM, ANN and simulated annealing. Def Technol 14(4):336–345

    Google Scholar 

  174. Stojanovic B, Blagojevic J, Babic M, Velickovic S, Miladinovic S (2017) Optimization of hybrid aluminum composites wear using Taguchi method and artificial neural network. Ind Lubr Tribol 69(6):1005–1015

    Google Scholar 

  175. Jadhav MR, Dabade UA (2016) Multi-objective optimization in hot machining of Al/SiCp metal matrix composites. In: IOP conference series: materials science and engineering, vol 114(1). IOP Publishing, p 012122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Ali Laghari.

Ethics declarations

Conflict of interest

Authors doesn’t have any conflict of interest nor any organization.

Obedience to Ethics Requirements

This work doesn’t have any studies concerning to human or animal topics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, R.A., Li, J., Laghari, A.A. et al. A Review on Application of Soft Computing Techniques in Machining of Particle Reinforcement Metal Matrix Composites. Arch Computat Methods Eng 27, 1363–1377 (2020). https://doi.org/10.1007/s11831-019-09340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09340-0

Navigation