Skip to main content

Advertisement

Log in

Computational Methods for Optimal Planning of Hybrid Renewable Microgrids: A Comprehensive Review and Challenges

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This manuscript aims to present a comprehensive literature reviews of various aspects for hybrid microgrids (HMGs) comprising mathe modeling, different optimization techniques, and common adapted objective functions along with their equality and inequality constraints and so on. Classical and modern optimization methodologies are recognized with their inherent features. Special care of renewable energy sources expressly wind and solar including energy storage systems are in order. In addition, uncertainties in solar and wind energy resources are highlighted, and the applications of forecasting models are presented. Comparisons among various HMGs planning and design methods are summarized and criticized for the sake of concluding their merits and demerits. Finally, technical advices for giving good insights for HMGs designers and future researches in this regard are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qoaider L, Steinbrecht D (2010) Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl Energy 87:427–435. https://doi.org/10.1016/j.apenergy.2009.06.012

    Article  Google Scholar 

  2. Phuangpornpitak N, Tia S (2011) Feasibility study of wind farms under the thai very small scale renewable energy power producer (VSPP) program. Energy Proc 9:159–170. https://doi.org/10.1016/j.egypro.2011.09.017

    Article  Google Scholar 

  3. Suhane P, Rangnekar S, Mittal A, Khare A (2016) Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation. IET Renew Power Gen 10(7):964–972. https://doi.org/10.1049/iet-rpg.2015.0394

    Article  Google Scholar 

  4. Bajpai P, Dash V (2012) Hybrid renewable energy systems for power generation in stand-alone applications: a review. Renew Sustain Energy Rev 16:2926–2939. https://doi.org/10.1016/j.rser.2012.02.009

    Article  Google Scholar 

  5. Zhao B, Zhang X, Li P, Wang K, Xue M, Wang C (2014) Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Appl Energy 113:1656–1666. https://doi.org/10.1016/j.apenergy.2013.09.015

    Article  Google Scholar 

  6. Parastegari M, Hooshmand R-A, Khodabakhshian A, Zare A-H (2015) Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets. Int J Electr Power Energy Syst 64:275–284. https://doi.org/10.1016/j.ijepes.2014.06.074

    Article  Google Scholar 

  7. Wu W, Wang C-Y, Hwang J-J (2015) Scenario-oriented design of an MFC/PV/Battery based hybrid power generation system. Int J Electr Power Energy Syst 65:34–40. https://doi.org/10.1016/j.ijepes.2014.09.026

    Article  Google Scholar 

  8. Fathima AH, Palanisamy K (2015) Optimization in microgrids with hybrid energy systems—a review. Renew Sustain Energy Rev 45:431–446. https://doi.org/10.1016/j.rser.2015.01.059

    Article  Google Scholar 

  9. Nadjemi O, Nacer T, Hamidat A, Salhi H (2017) Optimal hybrid PV/wind energy system sizing: application of cuckoo search algorithm for Algerian dairy farms. Renew Sustain Energy Rev 70:1352–1365. https://doi.org/10.1016/j.rser.2016.12.038

    Article  Google Scholar 

  10. Ho WS, Hashim H, Hassim MH, Muis ZA, Shamsuddin NLM (2012) Design of distributed energy system through electric system cascade analysis (ESCA). Appl Energy 99:309–315. https://doi.org/10.1016/j.apenergy.2012.04.016

    Article  Google Scholar 

  11. Maheri A (2014) A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems. Reliab Eng Syst Saf 130:159–174. https://doi.org/10.1016/j.ress.2014.05.008

    Article  Google Scholar 

  12. Lan H, Wen S, Hong Y-Y, Yu DC, Zhang L (2015) Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl Energy 158:26–34. https://doi.org/10.1016/j.apenergy.2015.08.031

    Article  Google Scholar 

  13. Belmili H, Haddadi M, Bacha S, Almi MF, Bendib B (2014) Sizing stand-alone photovoltaic–wind hybrid system: techno-economic analysis and optimization. Renew Sustain Energy Rev 30:821–832. https://doi.org/10.1016/j.rser.2013.11.011

    Article  Google Scholar 

  14. Malheiro A, Castro PM, Lima RM, Estanqueiro A (2015) Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renew Energy 83:646–657. https://doi.org/10.1016/j.renene.2015.04.066

    Article  Google Scholar 

  15. Ramli MAM, Bouchekara HREH, Alghamdi AS (2018) Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew Energy 121:400–411. https://doi.org/10.1016/j.renene.2018.01.058

    Article  Google Scholar 

  16. Tsuanyo D, Azoumah Y, Aussel D, Neveu P (2015) Modeling and optimization of batteryless hybrid PV (photovoltaic)/diesel systems for off-grid applications. Energy 86:152–163. https://doi.org/10.1016/j.energy.2015.03.128

    Article  Google Scholar 

  17. Maleki A, Ameri M, Keynia F (2015) Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system. Renew Energy 80:552–563. https://doi.org/10.1016/j.renene.2015.02.045

    Article  Google Scholar 

  18. Sawle Y, Gupta SC, Bohre AK (2017) Optimal sizing of standalone PV/wind/biomass hybrid energy system using GA and PSO optimization technique. Energy Proc 117:690–698. https://doi.org/10.1016/j.egypro.2017.05.183

    Article  Google Scholar 

  19. Sanajaoba S, Fernandez E (2016) Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy system. Renew Energy 96:1–10. https://doi.org/10.1016/j.renene.2016.04.069

    Article  Google Scholar 

  20. Sanajaoba Singh S, Fernandez E (2018) Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system. Energy 143:719–731. https://doi.org/10.1016/j.energy.2017.11.053

    Article  Google Scholar 

  21. Gampa SR, Das D (2015) Optimum placement and sizing of DGs considering average hourly variations of load. Int J Electr Power Energy Syst 66:25–40. https://doi.org/10.1016/j.ijepes.2014.10.047

    Article  Google Scholar 

  22. Merei G, Berger C, Sauer DU (2013) Optimization of an off-grid hybrid PV–wind–diesel system with different battery technologies using genetic algorithm. Sol Energy 97:460–473. https://doi.org/10.1016/j.solener.2013.08.016

    Article  Google Scholar 

  23. Gan LK, Shek JKH, Mueller MA (2015) Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: a case study in Scotland. Energy Convers Manag 106:479–494. https://doi.org/10.1016/j.enconman.2015.09.029

    Article  Google Scholar 

  24. Ghorbani N, Kasaeian A, Toopshekan A, Bahrami L, Maghami A (2018) Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 154:581–591. https://doi.org/10.1016/j.energy.2017.12.057

    Article  Google Scholar 

  25. Li B, Roche R, Paire D, Miraoui A (2017) Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation. Appl Energy 205:1244–1259. https://doi.org/10.1016/j.apenergy.2017.08.142

    Article  Google Scholar 

  26. Liu Z, Chen Y, Zhuo R, Jia H (2018) Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling. Appl Energy 210:1113–1125. https://doi.org/10.1016/j.apenergy.2017.07.002

    Article  Google Scholar 

  27. Nemati M, Braun M, Tenbohlen S (2018) Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl Energy 210:944–963. https://doi.org/10.1016/j.apenergy.2017.07.007

    Article  Google Scholar 

  28. Mahesh A, Sandhu KS (2015) Hybrid wind/photovoltaic energy system developments: critical review and findings. Renew Sustain Energy Rev 52:1135–1147. https://doi.org/10.1016/j.rser.2015.08.008

    Article  Google Scholar 

  29. Basbous T, Younes R, Ilinca A, Perron J (2015) Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area’s power generation. Energy 84:267–278. https://doi.org/10.1016/j.energy.2015.02.114

    Article  Google Scholar 

  30. Zahboune H, Kadda F, Zouggar S, Ziani E, Klemes J, Varbanov P et al (2014) The new electricity system cascade analysis method for optimal sizing of an autonomous hybrid PV/wind energy system with battery storage. In: 5th International renewable energy congress (IREC), pp 1–6. https://doi.org/10.1109/IREC.2014.6826962

  31. Maleki A (2018) Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination 435:221–234. https://doi.org/10.1016/j.desal.2017.05.034

    Article  Google Scholar 

  32. Mohamed Abdel Motaleb A, Kazim Bekdache S, Barrios LA (2016) Optimal sizing for a hybrid power system with wind/energy storage based in stochastic environment. Renew Sustain Energy Rev 59:1149–1158. https://doi.org/10.1016/j.rser.2015.12.267

    Article  Google Scholar 

  33. Abdelaziz Mohamed M, Eltamaly AM (2018) Modeling of hybrid renewable energy system. Model Simul Smart Grid Integr Hybrid Renew Energy Syst 121:11–21. https://doi.org/10.1007/978-3-319-64795-1_2

    Article  Google Scholar 

  34. Ma T, Yang H, Lu L (2014) A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Appl Energy 121:149–158. https://doi.org/10.1016/j.apenergy.2014.01.090

    Article  Google Scholar 

  35. Guasch D, Silvestre S (2003) Dynamic battery model for photovoltaic applications. Prog Photovol Res Appl 11:193–206. https://doi.org/10.1002/pip.480

    Article  Google Scholar 

  36. Kumar R, Gupta RA, Bansal AK (2013) Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm. Swarm Evolut Comput 8:33–43. https://doi.org/10.1016/j.swevo.2012.08.002

    Article  Google Scholar 

  37. Patel AM, Singal SK (2018) Economic analysis of integrated renewable energy system for electrification of remote rural area having scattered population. Int J Renew Energy Res 8:523–539

    Google Scholar 

  38. Sharafi M, Elmekkawy TY (2014) Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renew Energy 68:67–79. https://doi.org/10.1016/j.renene.2014.01.011

    Article  Google Scholar 

  39. Li B, Roche R, Miraoui A (2017) Microgrid sizing with combined evolutionary algorithm and MILP unit commitment. Appl Energy 188:547–562. https://doi.org/10.1016/j.apenergy.2016.12.038

    Article  Google Scholar 

  40. Yahiaoui A, Fodhil F, Benmansour K, Tadjine M, Cheggaga N (2017) Grey wolf optimizer for optimal design of hybrid renewable energy system PV-diesel generator-battery: application to the case of Djanet city of Algeria. Sol Energy 158:941–951. https://doi.org/10.1016/j.solener.2017.10.040

    Article  Google Scholar 

  41. Tito S, Lie T, Anderson T (2016) Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors. Sol Energy 136:525–532. https://doi.org/10.1016/j.solener.2016.07.036

    Article  Google Scholar 

  42. Yang H, Wei Z, Chengzhi L (2009) Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl Energy 86:163–169. https://doi.org/10.1016/j.apenergy.2008.03.008

    Article  Google Scholar 

  43. Baneshi M, Hadianfard F (2016) Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Convers Manag 127:233–244. https://doi.org/10.1016/j.enconman.2016.09.008

    Article  Google Scholar 

  44. Olatomiwa L, Mekhilef S, Huda ASN, Ohunakin OS (2015) Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renew Energy 83:435–446. https://doi.org/10.1016/j.renene.2015.04.057

    Article  Google Scholar 

  45. Lujano-Rojas JM, Dufo-López R, Bernal-Agustín JL (2014) Technical and economic effects of charge controller operation and coulombic efficiency on stand-alone hybrid power systems. Energy Convers Manag 86:709–716. https://doi.org/10.1016/j.enconman.2014.06.053

    Article  Google Scholar 

  46. Kalinci Y, Hepbasli A, Dincer I (2015) Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. Int J Hydrog Energy 40:7652–7664. https://doi.org/10.1016/j.ijhydene.2014.10.147

    Article  Google Scholar 

  47. Alvarez SR, Ruiz AM, Oviedo JE (2017) Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian community. In: 2017 IEEE 6th international conference on renewable energy research and applications (ICRERA), pp 234–239. https://doi.org/10.1109/ICRERA.2017.8191272

  48. Ogunjuyigbe ASO, Ayodele TR, Akinola OA (2016) Optimal allocation and sizing of PV/wind/split-diesel/battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl Energy 171:153–171. https://doi.org/10.1016/j.apenergy.2016.03.051

    Article  Google Scholar 

  49. Kaabeche A, Diaf S, Ibtiouen R (2017) Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria. Sol Energy 155:727–738. https://doi.org/10.1016/j.solener.2017.06.070

    Article  Google Scholar 

  50. Zhao J, Yuan X (2016) Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm. Soft Comput 20:2841–2853. https://doi.org/10.1007/s00500-015-1685-6

    Article  Google Scholar 

  51. Fathy A (2016) A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt. Renew Energy 95:367–380. https://doi.org/10.1016/j.renene.2016.04.030

    Article  Google Scholar 

  52. Ho WS, Macchietto S, Lim JS, Hashim H, Muis ZA, Liu WH (2016) Optimal scheduling of energy storage for renewable energy distributed energy generation system. Renew Sustain Energy Rev 58:1100–1107. https://doi.org/10.1016/j.rser.2015.12.097

    Article  Google Scholar 

  53. Brandoni C, Renzi M (2015) Optimal sizing of hybrid solar micro-CHP systems for the household sector. Appl Therm Eng 75:896–907. https://doi.org/10.1016/j.applthermaleng.2014.10.023

    Article  Google Scholar 

  54. Al-falahi MDA, Jayasinghe SDG, Enshaei H (2017) A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers Manag 143:252–274. https://doi.org/10.1016/j.enconman.2017.04.019

    Article  Google Scholar 

  55. Sinha S, Chandel SS (2015) Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renew Sustain Energy Rev 50:755–769. https://doi.org/10.1016/j.rser.2015.05.040

    Article  Google Scholar 

  56. Siddaiah R, Saini RP (2016) A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renew Sustain Energy Rev 58:376–396. https://doi.org/10.1016/j.rser.2015.12.281

    Article  Google Scholar 

  57. Nagabhushana AC, Jyoti R, Raju AB (2011) Economic analysis and comparison of proposed HRES for stand-alone applications at various places in Karnataka state. In: ISGT2011-India, pp 380–385. https://doi.org/10.1109/ISET-India.2011.6145346

  58. Schrage LE (1984) Linear, integer, and quadratic programming with LINDO. Scientific Press, Singapore

    Google Scholar 

  59. Kanase-Patil AB, Saini RP, Sharma MP (2010) Integrated renewable energy systems for off grid rural electrification of remote area. Renew Energy 35:1342–1349. https://doi.org/10.1016/j.renene.2009.10.005

    Article  Google Scholar 

  60. Ramakumar R, Abouzahr I, Ashenayi K (1992) A knowledge-based approach to the design of integrated renewable energy systems. IEEE Trans Energy Convers 7:648–659. https://doi.org/10.1109/60.182647

    Article  Google Scholar 

  61. Gupta A, Saini RP, Sharma MP (2006) Optimised application of hybrid renewable energy system in rural electrification. In: 2006 India international conference on power electronics, pp 337–340. https://doi.org/10.1109/IICPE.2006.4685393

  62. Akella AK, Sharma MP, Saini RP (2007) Optimum utilization of renewable energy sources in a remote area. Renew Sustain Energy Rev 11:894–908. https://doi.org/10.1016/j.rser.2005.06.006

    Article  Google Scholar 

  63. Gabbar HA, Zidan A (2016) Optimal scheduling of interconnected micro energy grids with multiple fuel options. Sustain Energy Grids Netw 7:80–89. https://doi.org/10.1016/j.segan.2016.06.006

    Article  Google Scholar 

  64. Wu Q, Ren H, Gao W, Ren J (2016) Multi-objective optimization of a distributed energy network integrated with heating interchange. Energy 109:353–364. https://doi.org/10.1016/j.energy.2016.04.112

    Article  Google Scholar 

  65. Theo WL, Lim JS, Wan Alwi SR, Mohammad Rozali NE, Ho WS, Abdul-Manan Z (2016) An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park. Energy 116:1423–1441. https://doi.org/10.1016/j.energy.2016.05.043

    Article  Google Scholar 

  66. Omu A, Choudhary R, Boies A (2013) Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 61:249–266. https://doi.org/10.1016/j.enpol.2013.05.009

    Article  Google Scholar 

  67. Ren H, Wu Q, Gao W, Zhou W (2016) Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications. Energy 113:702–712. https://doi.org/10.1016/j.energy.2016.07.091

    Article  Google Scholar 

  68. Koutroulis E, Kolokotsa D, Potirakis A, Kalaitzakis K (2006) Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol Energy 80:1072–1088. https://doi.org/10.1016/j.solener.2005.11.002

    Article  Google Scholar 

  69. Upadhyay S, Sharma MP (2014) A review on configurations, control and sizing methodologies of hybrid energy systems. Renew Sustain Energy Rev 38:47–63. https://doi.org/10.1016/j.rser.2014.05.057

    Article  Google Scholar 

  70. Khatod DK, Pant V, Sharma J (2010) Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources. IEEE Trans Energy Convers 25:535–545. https://doi.org/10.1109/TEC.2009.2033881

    Article  Google Scholar 

  71. Luna-Rubio R, Trejo-Perea M, Vargas-Vázquez D, Ríos-Moreno GJ (2012) Optimal sizing of renewable hybrids energy systems: a review of methodologies. Sol Energy 86:1077–1088. https://doi.org/10.1016/j.solener.2011.10.016

    Article  Google Scholar 

  72. Kanase-Patil AB, Saini RP, Sharma MP (2011) Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renew Energy 36:2809–2821. https://doi.org/10.1016/j.renene.2011.04.022

    Article  Google Scholar 

  73. Ghofrani M, Hosseini NN (2016) Optimizing hybrid renewable energy systems: a review. In: Zobaa AF, Afifi SN, Pisica I (eds) Sustainable energy. IntechOpen, Ch. 08. https://doi.org/10.5772/65971

  74. Erdinc O, Uzunoglu M (2012) Optimum design of hybrid renewable energy systems: overview of different approaches. Renew Sustain Energy Rev 16:1412–1425. https://doi.org/10.1016/j.rser.2011.11.011

    Article  Google Scholar 

  75. Seeling-Hochmuth GC (1997) A combined optimisation concet for the design and operation strategy of hybrid-PV energy systems. Sol Energy 61:77–87. https://doi.org/10.1016/S0038-092X(97)00028-5

    Article  Google Scholar 

  76. Liao G-C (2012) Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system—using chaotic quantum genetic algorithm. Int J Electr Power Energy Syst 43:779–787. https://doi.org/10.1016/j.ijepes.2012.06.040

    Article  Google Scholar 

  77. Zhao B, Zhang X, Chen J, Wang C, Guo L (2013) Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Trans Sustain Energy 4:934–943. https://doi.org/10.1109/tste.2013.2248400

    Article  Google Scholar 

  78. Feroldi D, Zumoffen D (2014) Sizing methodology for hybrid systems based on multiple renewable power sources integrated to the energy management strategy. Int J Hydrog Energy 39:8609–8620. https://doi.org/10.1016/j.ijhydene.2014.01.003

    Article  Google Scholar 

  79. Koutroulis E, Kolokotsa D (2010) Design optimization of desalination systems power-supplied by PV and W/G energy sources. Desalination 258:171–181. https://doi.org/10.1016/j.desal.2010.03.018

    Article  Google Scholar 

  80. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6:182–197

    Article  Google Scholar 

  81. Katsigiannis YA, Georgilakis PS, Karapidakis ES (2010) Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renew Power Gen 4(5):404–419. https://doi.org/10.1049/iet-rpg.2009.0076

    Article  Google Scholar 

  82. Guo L, Liu W, Jiao B, Hong B, Wang C (2014) “Multi-objective stochastic optimal planning method for stand-alone microgrid system. IET Gen Transm Distrib 8(7):1263–1273. https://doi.org/10.1049/iet-gtd.2013.0541

    Article  Google Scholar 

  83. Babu GSS, Das DB, Patvardhan C (2008) Real-parameter quantum evolutionary algorithm for economic load dispatch. IET Gen Transm Distrib 2(1):22–31. https://doi.org/10.1049/iet-gtd:20060495

    Article  Google Scholar 

  84. Zeng J, Li M, Liu JF, Wu J, Ngan HW (2010) Operational optimization of a stand-alone hybrid renewable energy generation system based on an improved genetic algorithm. In: IEEE PES general meeting, pp 1–6. https://doi.org/10.1109/PES.2010.5589885

  85. Yang HX, Zhou W, Lu L, Fang ZH (2008) Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Sol Energy 82:354–367. https://doi.org/10.1016/j.solener.2007.08.005

    Article  Google Scholar 

  86. Lau KY, Yousof MFM, Arshad SNM, Anwari M, Yatim AHM (2010) Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 35:3245–3255. https://doi.org/10.1016/j.energy.2010.04.008

    Article  Google Scholar 

  87. Ismail MS, Moghavvemi M, Mahlia TMI (2013) Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers Manag 69:163–173. https://doi.org/10.1016/j.enconman.2013.02.005

    Article  Google Scholar 

  88. Daming X, Longyun K, Liuchen C, Binggang C (2005) Optimal sizing of standalone hybrid wind/PV power systems using genetic algorithms. In: Canadian conference on electrical and computer engineering, pp 1722–1725. https://doi.org/10.1109/CCECE.2005.1557315

  89. García-Triviño P, Llorens-Iborra F, García-Vázquez CA, Gil-Mena AJ, Fernández-Ramírez LM, Jurado F (2014) Long-term optimization based on PSO of a grid-connected renewable energy/battery/hydrogen hybrid system. Int J Hydrog Energy 39:10805–10816. https://doi.org/10.1016/j.ijhydene.2014.05.064

    Article  Google Scholar 

  90. Zhao YS, Zhan J, Zhang Y, Wang DP, Zou BG (2009) The optimal capacity configuration of an independent wind/PV hybrid power supply system based on improved PSO algorithm. In: IET conference proceedings, pp 159–159. https://doi.org/10.1049/cp.2009.1806

  91. Sánchez V, Ramirez JM, Arriaga G (2010) Optimal sizing of a hybrid renewable system. In: 2010 IEEE international conference on industrial technology, pp 949–954. https://doi.org/10.1109/ICIT.2010.5472544

  92. Ardakani FJ, Riahy G, Abedi M (2010) Design of an optimum hybrid renewable energy system considering reliability indices. In: 2010 18th Iranian conference on electrical engineering, pp 842–847. https://doi.org/10.1109/IRANIANCEE.2010.5506958

  93. Bashir M, Sadeh J (2012) Size optimization of new hybrid stand-alone renewable energy system considering a reliability index. In: 2012 11th International conference on environment and electrical engineering, pp 989–994. https://doi.org/10.1109/EEEIC.2012.6221521

  94. Keyrouz F, Hamad M, Georges S (2013) A novel unified maximum power point tracker for controlling a hybrid wind-solar and fuel-cell system. In: 2013 Eighth international conference and exhibition on ecological vehicles and renewable energies (EVER), pp 1–6. https://doi.org/10.1109/EVER.2013.6521526

  95. Amer M, Namaane A, M’Sirdi NK (2013) Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Energy Proc 42:318–327. https://doi.org/10.1016/j.egypro.2013.11.032

    Article  Google Scholar 

  96. Sanchez VM, Chavez-Ramirez AU, Duron-Torres SM, Hernandez J, Arriaga LG, Ramirez JM (2014) Techno-economical optimization based on swarm intelligence algorithm for a stand-alone wind-photovoltaic-hydrogen power system at south-east region of Mexico. Int J Hydrog Energy 39:16646–16655. https://doi.org/10.1016/j.ijhydene.2014.06.034

    Article  Google Scholar 

  97. Paliwal P, Patidar NP, Nema RK (2014) Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using particle swarm optimization. Renew Energy 63:194–204. https://doi.org/10.1016/j.renene.2013.09.003

    Article  Google Scholar 

  98. Safari S, Ardehali MM, Sirizi MJ (2013) Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage. Energy Convers Manag 65:41–49. https://doi.org/10.1016/j.enconman.2012.08.012

    Article  Google Scholar 

  99. Borhanazad H, Mekhilef S, Gounder Ganapathy V, Modiri-Delshad M, Mirtaheri A (2014) Optimization of micro-grid system using MOPSO. Renew Energy 71:295–306. https://doi.org/10.1016/j.renene.2014.05.006

    Article  Google Scholar 

  100. Askarzadeh A, dos Santos Coelho L (2015) A novel framework for optimization of a grid independent hybrid renewable energy system: a case study of Iran. Sol Energy 112:383–396. https://doi.org/10.1016/j.solener.2014.12.013

    Article  Google Scholar 

  101. Baghaee HR, Mirsalim M, Gharehpetian GB, Talebi HA (2016) Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115:1022–1041. https://doi.org/10.1016/j.energy.2016.09.007

    Article  Google Scholar 

  102. Zhou T, Sun W (2014) Optimization of battery–supercapacitor hybrid energy storage station in wind/solar generation system. IEEE Trans Sustain Energy 5:408–415. https://doi.org/10.1109/TSTE.2013.2288804

    Article  Google Scholar 

  103. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1:330–343

    MATH  Google Scholar 

  104. Singh S, Singh M, Kaushik SC (2016) Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers Manag 128:178–190. https://doi.org/10.1016/j.enconman.2016.09.046

    Article  Google Scholar 

  105. Fetanat A, Khorasaninejad E (2015) Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming. Appl Soft Comput 31:196–209. https://doi.org/10.1016/j.asoc.2015.02.047

    Article  Google Scholar 

  106. Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17:474–494. https://doi.org/10.1109/TEVC.2012.2204264

    Article  Google Scholar 

  107. Shi Z, Wang R, Zhang T (2015) Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach. Sol Energy 118:96–106. https://doi.org/10.1016/j.solener.2015.03.052

    Article  Google Scholar 

  108. Gupta RA, Kumar R, Bansal AK (2015) BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting. Renew Sustain Energy Rev 41:1366–1375. https://doi.org/10.1016/j.rser.2014.09.017

    Article  Google Scholar 

  109. Maleki A, Askarzadeh A (2014) Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Sol Energy 107:227–235. https://doi.org/10.1016/j.solener.2014.05.016

    Article  Google Scholar 

  110. Maleki A, Askarzadeh A (2014) Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran. Sustain Energy Technol Assess 7:147–153. https://doi.org/10.1016/j.seta.2014.04.005

    Article  Google Scholar 

  111. Gharavi H, Ardehali MM, Ghanbari-Tichi S (2015) Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renew Energy 78:427–437. https://doi.org/10.1016/j.renene.2015.01.029

    Article  Google Scholar 

  112. Ahmadi S, Abdi S (2016) Application of the hybrid big bang-big crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol Energy 134:366–374. https://doi.org/10.1016/j.solener.2016.05.019

    Article  Google Scholar 

  113. Cho J-H, Chun M-G, Hong W-P (2016) Structure optimization of stand-alone renewable power systems based on multi object function. Energies. https://doi.org/10.3390/en9080649

    Article  Google Scholar 

  114. Mukhtaruddin RNSR, Rahman HA, Hassan MY, Jamian JJ (2015) Optimal hybrid renewable energy design in autonomous system using iterative-pareto-fuzzy technique. Int J Electr Power Energy Syst 64:242–249. https://doi.org/10.1016/j.ijepes.2014.07.030

    Article  Google Scholar 

  115. Abdelhak BJ, Najib E, Abdelaziz H, Hnaien F, Yalaoui F (2014) Optimum sizing of hybrid PV/wind/battery using fuzzy-adaptive genetic algorithm in real and average battery service life. In: 2014 International symposium on power electronics, electrical drives, automation and motion, pp 871–876. https://doi.org/10.1109/SPEEDAM.2014.6872092

  116. Zahboune H, Zouggar S, Krajacic G, Varbanov PS, Elhafyani M, Ziani E (2016) Optimal hybrid renewable energy design in autonomous system using modified electric system cascade analysis and Homer software. Energy Convers Manag 126:909–922. https://doi.org/10.1016/j.enconman.2016.08.061

    Article  Google Scholar 

  117. Dufo-López R, Cristóbal-Monreal IR, Yusta JM (2016) Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renew Energy 94:280–293. https://doi.org/10.1016/j.renene.2016.03.065

    Article  Google Scholar 

  118. Lujano-Rojas JM, Dufo-López R, Bernal-Agustín JL (2013) Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy 63:19–27. https://doi.org/10.1016/j.energy.2013.10.003

    Article  Google Scholar 

  119. Katsigiannis YA, Georgilakis PS, Karapidakis ES (2012) Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Trans Sustain Energy 3:330–338. https://doi.org/10.1109/TSTE.2012.2184840

    Article  Google Scholar 

  120. Hong Y, Lian R (2012) Optimal sizing of hybrid wind/pv/diesel generation in a stand-alone power system using markov-based genetic algorithm. IEEE Trans Power Deliv 27:640–647. https://doi.org/10.1109/TPWRD.2011.2177102

    Article  Google Scholar 

  121. Askarzadeh A (2013) A discrete chaotic harmony search-based simulated annealing algorithm for optimum design of PV/wind hybrid system. Sol Energy 97:93–101. https://doi.org/10.1016/j.solener.2013.08.014

    Article  Google Scholar 

  122. Maleki A, Khajeh MG, Rosen MA (2016) Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach. Energy 114:1120–1134. https://doi.org/10.1016/j.energy.2016.06.134

    Article  Google Scholar 

  123. Khatib T, Mohamed A, Sopian K (2012) Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: case study of Kuala Terengganu, Malaysia. Energy Build 47:321–331. https://doi.org/10.1016/j.enbuild.2011.12.006

    Article  Google Scholar 

  124. Ma G, Xu G, Chen Y, Ju R (2017) Multi-objective optimal configuration method for a standalone wind–solar–battery hybrid power system. IET Renew Power Gen 11(1):194–202. https://doi.org/10.1049/iet-rpg.2016.0646

    Article  Google Scholar 

  125. Maleki A, Khajeh MG, Ameri M (2016) Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. Int J Electr Power Energy Syst 83:514–524. https://doi.org/10.1016/j.ijepes.2016.04.008

    Article  Google Scholar 

  126. Tahani M, Babayan N, Pouyaei A (2015) Optimization of PV/wind/battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers Manag 106:644–659. https://doi.org/10.1016/j.enconman.2015.10.011

    Article  Google Scholar 

  127. Connolly D, Lund H, Mathiesen BV, Leahy M (2010) A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy 87:1059–1082. https://doi.org/10.1016/j.apenergy.2009.09.026

    Article  Google Scholar 

  128. Bernal-Agustín JL, Dufo-López R (2009) Simulation and optimization of stand-alone hybrid renewable energy systems. Renew Sustain Energy Rev 13:2111–2118. https://doi.org/10.1016/j.rser.2009.01.010

    Article  Google Scholar 

  129. Hrayshat ES (2009) Techno-economic analysis of autonomous hybrid photovoltaic-diesel-battery system. Energy Sustain Dev 13:143–150. https://doi.org/10.1016/j.esd.2009.07.003

    Article  Google Scholar 

  130. Mohamed MA, Eltamaly AM (2018) Modeling and simulation of smart grid integrated with hybrid renewable energy systems. Springer, New York. https://doi.org/10.1007/978-3-319-64795-1

    Book  Google Scholar 

  131. Kolhe ML, Ranaweera KMIU, Gunawardana AGBS (2015) Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustain Energy Technol Assess 11:53–64. https://doi.org/10.1016/j.seta.2015.03.008

    Article  Google Scholar 

  132. Shahzad MK, Zahid A, ur Rashid T, Rehan MA, Ali M, Ahmad M (2017) Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software,”. Renewable Energy 106:264–273. https://doi.org/10.1016/j.renene.2017.01.033

    Article  Google Scholar 

  133. Kumar YVP, Bhimasingu R (2014) Optimal sizing of microgrid for an urban community building in south India using HOMER. In: 2014 IEEE international conference on power electronics, drives and energy systems (PEDES), pp 1–6. https://doi.org/10.1109/PEDES.2014.7042059

  134. Amutha WM, Rajini V (2016) Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER. Renew Sustain Energy Rev 62:236–246. https://doi.org/10.1016/j.rser.2016.04.042

    Article  Google Scholar 

  135. Das BK, Hoque N, Mandal S, Pal TK, Raihan MA (2017) A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 134:775–788. https://doi.org/10.1016/j.energy.2017.06.024

    Article  Google Scholar 

  136. Al-Sharafi A, Sahin AZ, Ayar T, Yilbas BS (2017) Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew Sustain Energy Rev 69:33–49. https://doi.org/10.1016/j.rser.2016.11.157

    Article  Google Scholar 

  137. Shaahid SM, Al-Hadhrami LM, Rahman MK (2014) Review of economic assessment of hybrid photovoltaic-diesel-battery power systems for residential loads for different provinces of Saudi Arabia. Renew Sustain Energy Rev 31:174–181. https://doi.org/10.1016/j.rser.2013.11.055

    Article  Google Scholar 

  138. Haghighat Mamaghani A, Avella Escandon SA, Najafi B, Shirazi A, Rinaldi F (2016) Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renew Energy 97:293–305. https://doi.org/10.1016/j.renene.2016.05.086

    Article  Google Scholar 

  139. Vides-Prado A, Camargo EO, Vides-Prado C, Orozco IH, Chenlo F, Candelo JE et al (2018) Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renew Sustain Energy Rev 82:4245–4255. https://doi.org/10.1016/j.rser.2017.05.101

    Article  Google Scholar 

  140. Ajlan A, Tan CW, Abdilahi AM (2017) Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renew Sustain Energy Rev 75:559–570. https://doi.org/10.1016/j.rser.2016.11.024

    Article  Google Scholar 

  141. Khare V, Nema S, Baredar P (2016) Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT. Int J Hydrog Energy 41:16743–16751. https://doi.org/10.1016/j.ijhydene.2016.06.228

    Article  Google Scholar 

  142. Amrollahi MH, Bathaee SMT (2017) Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl Energy 202:66–77. https://doi.org/10.1016/j.apenergy.2017.05.116

    Article  Google Scholar 

  143. Ciez RE, Whitacre JF (2016) Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types. Energy Convers Manag 112:435–444. https://doi.org/10.1016/j.enconman.2016.01.014

    Article  Google Scholar 

  144. Han X, Zhang H, Yu X, Wang L (2016) Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models. Appl Energy 184:103–118. https://doi.org/10.1016/j.apenergy.2016.10.008

    Article  Google Scholar 

  145. Askarzadeh A (2017) Distribution generation by photovoltaic and diesel generator systems: energy management and size optimization by a new approach for a stand-alone. Energy 122:542–551. https://doi.org/10.1016/j.energy.2017.01.105

    Article  Google Scholar 

  146. Nogueira CEC, Vidotto ML, Niedzialkoski RK, de Souza SNM, Chaves LI, Edwiges T et al (2014) Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil. Renew Sustain Energy Rev 29:151–157. https://doi.org/10.1016/j.rser.2013.08.071

    Article  Google Scholar 

  147. Madhlopa A, Sparks D, Keen S, Moorlach M, Krog P, Dlamini T (2015) Optimization of a PV–wind hybrid system under limited water resources. Renew Sustain Energy Rev 47:324–331. https://doi.org/10.1016/j.rser.2015.03.051

    Article  Google Scholar 

  148. Kaabeche A, Ibtiouen R (2014) Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Sol Energy 103:171–182. https://doi.org/10.1016/j.solener.2014.02.017

    Article  Google Scholar 

  149. Bahmani-Firouzi B, Azizipanah-Abarghooee R (2014) Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int J Electr Power Energy Syst 56:42–54. https://doi.org/10.1016/j.ijepes.2013.10.019

    Article  Google Scholar 

  150. Maleki A, Askarzadeh A (2014) Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system. Int J Hydrog Energy 39:9973–9984. https://doi.org/10.1016/j.ijhydene.2014.04.147

    Article  Google Scholar 

  151. Moradi H, Esfahanian M, Abtahi A, Zilouchian A (2018) Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system. Energy 147:226–238. https://doi.org/10.1016/j.energy.2018.01.016

    Article  Google Scholar 

  152. Jacob AS, Banerjee R, Ghosh PC (2018) Sizing of hybrid energy storage system for a PV based microgrid through design space approach. Appl Energy 212:640–653. https://doi.org/10.1016/j.apenergy.2017.12.040

    Article  Google Scholar 

  153. Sajed Sadati SM, Jahani E, Taylan O, Baker DK (2017) Sizing of photovoltaic-wind-battery hybrid system for a mediterranean island community based on estimated and measured meteorological data. J Sol Energy Eng 140(1):12. https://doi.org/10.1115/1.4038466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Hameed.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emad, D., El-Hameed, M.A., Yousef, M.T. et al. Computational Methods for Optimal Planning of Hybrid Renewable Microgrids: A Comprehensive Review and Challenges. Arch Computat Methods Eng 27, 1297–1319 (2020). https://doi.org/10.1007/s11831-019-09353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09353-9

Navigation