Skip to main content

Advertisement

Log in

Latest Advancements in Heat Transfer Enhancement in the Micro-channel Heat Sinks: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Miniaturization of the energy systems and high powered electronic devices necessitates the high capacity compact heat exchangers to dissipate the heat generated. Microchannel heatsinks (MCHS) are modern heat exchangers with the fluid flowing channels of size in microscale. These are very compact heat exchangers with higher ratios of heat transfer area to the volume. Huge research work has been going on to improve the hydraulic and thermal performance of the MCHS. This article provides the information about experimental and numerical studies that has been done on the heat transfer and its enhancement in micro-scale cooling devices. This review mainly concentrate on the heat transfer enhancement techniques in microchannel, numerical methods that has been implemented for the study of micro-channels and the parameters which effects the heat transfer rate. The recent studies on microchannel heat sink to improve its performance by geometry modifications, jet impingement, using Nano fluids, flow boiling and Magneto-hydrodynamics are thoroughly discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51

Similar content being viewed by others

References

  1. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300

    Article  Google Scholar 

  2. Elani UA, Alawaji SH, Hasnain SM (1996) The role of renewable energy in energy management and conservation. Renew Energy 9:1203–1206

    Article  Google Scholar 

  3. Karoly R, Dumitru CD (2014) Management of a power system based on renewable energy. Procedia Technol 12:693–697. https://doi.org/10.1016/j.protcy.2013.12.551

    Article  Google Scholar 

  4. Kohsri S, Plangklang B (2011) Energy management and control system for smart renewable energy remote power generation. In: Energy procedia

  5. Javied T, Rackow T, Franke J (2015) Implementing energy management system to increase energy efficiency in manufacturing companies. In: Procedia CIRP

  6. Hasatani M (1997) Highly efficient conversion technologies for energy utilization. Energy Convers Manag 38:931–940. https://doi.org/10.1016/s0196-8904(96)00124-0

    Article  Google Scholar 

  7. Nassar IA, Hossam K, Abdella MM (2019) Economic and environmental benefits of increasing the renewable energy sources in the power system. Energy Rep 5:1082–1088. https://doi.org/10.1016/j.egyr.2019.08.006

    Article  Google Scholar 

  8. Song H, Liu J, Liu B et al (2018) Two-dimensional materials for thermal management applications. Joule 2:442–463. https://doi.org/10.1016/j.joule.2018.01.006

    Article  Google Scholar 

  9. Habibi Khalaj A, Halgamuge SK (2017) A Review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system. Appl Energy 205:1165–1188. https://doi.org/10.1016/j.apenergy.2017.08.037

    Article  Google Scholar 

  10. Ameel TA, Warrington RO, Wegeng RS, Drost MK (1997) Miniaturization technologies applied to energy systems. Energy Convers Manag 38:969–982

    Article  Google Scholar 

  11. Lakshminarayanan V, Sriraam N (2014) The effect of temperature on the reliability of electronic components. In: IEEE CONECCT 2014–2014 IEEE international conference on electrical, computer and communication technologies, pp 1–6. https://doi.org/10.1109/CONECCT.2014.6740182

  12. Kandlikar SG, Grande WJ (2002) Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. ASME Int Mech Eng Congr Expo Proc. https://doi.org/10.1115/IMECE2002-32043

    Article  Google Scholar 

  13. Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl Mech Rev 53:175–193. https://doi.org/10.1115/1.3097347

    Article  Google Scholar 

  14. Obot NT (2002) Toward a better understanding of friction and heat/mass transfer in microchannels—a literature review. Microscale Thermophys Eng 6:155–173. https://doi.org/10.1080/10893950290053295

    Article  Google Scholar 

  15. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL 2:126–129. https://doi.org/10.1109/EDL.1981.25367

    Article  Google Scholar 

  16. Missaggia LJ, Walpole JN, Liau ZL, Phillips RJ (1989) Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. IEEE J Quantum Electron 25:1988–1992. https://doi.org/10.1109/3.35223

    Article  Google Scholar 

  17. Peng XF, Peterson GP (1996) Forced convection heat transfer of single-phase binary mixtures through microchannels. Exp Therm Fluid Sci 12:98–104. https://doi.org/10.1016/0894-1777(95)00079-8

    Article  Google Scholar 

  18. Judy J, Maynes D, Webb BW (2002) Characterization of frictional pressure drop for liquid flows through microchannels. Int J Heat Mass Transf 45:3477–3489. https://doi.org/10.1016/S0017-9310(02)00076-5

    Article  Google Scholar 

  19. Agostini B, Watel B, Bontemps A, Thonon B (2004) Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation. Exp Therm Fluid Sci. https://doi.org/10.1016/S0894-1777(03)00027-X

    Article  Google Scholar 

  20. Takács G, Szabó PG, Bognár G (2016) Enhanced thermal characterization method of microscale heatsink structures. Microelectron Reliab 67:21–28. https://doi.org/10.1016/j.microrel.2016.09.019

    Article  Google Scholar 

  21. Zhang CP, Lian YF, Hsu CH et al (2015) Investigations of thermal and flow behavior of bifurcations and bends in fractal-like microchannel networks: secondary flow and recirculation flow. Int J Heat Mass Transf 85:723–731. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.118

    Article  Google Scholar 

  22. Manay E, Sahin B (2016) The effect of microchannel height on performance of nanofluids. Int J Heat Mass Transf 95:307–320. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.015

    Article  Google Scholar 

  23. Chai L, Wang L (2018) Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers. Int J Therm Sci 127:201–212. https://doi.org/10.1016/j.ijthermalsci.2018.01.029

    Article  Google Scholar 

  24. Jing D, He L (2019) Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. Int J Heat Mass Transf 143:118604. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118604

    Article  Google Scholar 

  25. Yang D, Wang Y, Ding G et al (2017) Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl Therm Eng 112:1547–1556. https://doi.org/10.1016/j.applthermaleng.2016.08.211

    Article  Google Scholar 

  26. Xia G, Ma D, Zhai Y et al (2015) Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers Manag 105:848–857. https://doi.org/10.1016/j.enconman.2015.08.042

    Article  Google Scholar 

  27. Wang H, Chen Z, Gao J (2016) Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng 107:870–879. https://doi.org/10.1016/j.applthermaleng.2016.07.039

    Article  Google Scholar 

  28. Li P, Luo Y, Zhang D, Xie Y (2018) Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int J Heat Mass Transf 119:152–162. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.112

    Article  Google Scholar 

  29. Wang SL, Li XY, Wang XD, Lu G (2018) Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins. Int Commun Heat Mass Transf 93:41–47. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.003

    Article  Google Scholar 

  30. Quan X, Dong L, Cheng P (2010) Determination of annular condensation heat transfer coefficient of steam in microchannels with trapezoidal cross sections. Int J Heat Mass Transf 53:3670–3676. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.043

    Article  MATH  Google Scholar 

  31. Tingzhen M, Cunjin CAI, Wei Y et al (2018) Optimization of dimples in microchannel heat sink with impinging jets—part A: mathematical model and the influence of dimple radius. J Therm Sci 27:195–202

    Article  Google Scholar 

  32. Japar WMAA, Sidik NAC, Mat S (2018) A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transf 99:62–81. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.005

    Article  Google Scholar 

  33. Serafy C, Srivastava A, Yeung D (2015) Unlocking the true potential of 3D CPUs with micro-fluidic cooling. In: Proceedings of international symposium on low power electronics and design 2015, pp 323–326. https://doi.org/10.1145/2627369.2627666

  34. Zając P, Napieralski A (2018) Novel thermal model of microchannel cooling system designed for fast simulation of liquid-cooled ICs. Microelectron Reliab 87:245–258. https://doi.org/10.1016/j.microrel.2018.06.020

    Article  Google Scholar 

  35. Garrity PT, Klausner JF, Mei R (2007) A flow boiling microchannel evaporator plate for fuel cell thermal management. Heat Transf Eng 28:877–884. https://doi.org/10.1080/01457630701378333

    Article  Google Scholar 

  36. Datta M, Choi HW (2015) Microheat exchanger for cooling high power laser diodes. Appl Therm Eng 90:266–273. https://doi.org/10.1016/j.applthermaleng.2015.07.012

    Article  Google Scholar 

  37. Deng D, Xie Y, Chen L et al (2019) Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling. Energy 181:954–963. https://doi.org/10.1016/j.energy.2019.06.034

    Article  Google Scholar 

  38. Poachaiyapoom A, Leardkun R, Mounkong J (2019) Case studies in thermal engineering miniature vapor compression refrigeration system for electronics cooling. Case Stud Therm Eng 13:100365. https://doi.org/10.1016/j.csite.2018.100365

    Article  Google Scholar 

  39. Tullius JF, Vajtai R, Bayazitoglu Y (2011) A review of cooling in microchannels. Heat Transf Eng 32:527–541. https://doi.org/10.1080/01457632.2010.506390

    Article  Google Scholar 

  40. Mukherjee S, Mudawar I (2002) Smart, low-cost, pumpless loop for micro-channel electronic cooling using flat and enhanced surfaces. In: IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems 2002, pp 360–370. https://doi.org/10.1109/ITHERM.2002.1012479

  41. Gupta MP, Vallabhaneni AK, Kumar S (2017) Self-consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs. IEEE Trans Compon Packag Manuf Technol 7:1305–1312. https://doi.org/10.1109/TCPMT.2017.2693399

    Article  Google Scholar 

  42. Erp R Van, Kampitsis G, Matioli E (2019) A manifold microchannel heat sink for ultra-high power density liquid-cooled converters. In: IEEE Applied Power Electronics Conference and Exposition—APEC 2019, pp 1383–1389. https://doi.org/10.1109/APEC.2019.8722308

  43. Deng Z, Shen J, Dai W et al (2019) Numerical study on cooling of high-power laser diode arrays using slot jet array impingement. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.114061

    Article  Google Scholar 

  44. Zhou W, Deng W, Lu L et al (2014) Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production. Int J Hydrogen Energy 39:4884–4894. https://doi.org/10.1016/j.ijhydene.2014.01.041

    Article  Google Scholar 

  45. Yuan D, Ci P, Tian F, et al (2009) The improvement of electrochemical etching process for silicon microchannel plates. In: 4th International conference on nano/micro engineered and molecular systems NEMS 2009, pp 964–969. https://doi.org/10.1109/NEMS.2009.5068734

  46. Kikuchi T, Wachi Y, Sakairi M, Suzuki RO (2013) Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution. Microelectron Eng 111:14–20. https://doi.org/10.1016/j.mee.2013.05.007

    Article  Google Scholar 

  47. Jung PG, Jung ID, Lee SM, Ko JS (2008) Fabrication of self-encapsulated nickel microchannels and nickel nanowalls by reactive ion etching. J Mater Process Technol 208:111–116. https://doi.org/10.1016/j.jmatprotec.2007.12.132

    Article  Google Scholar 

  48. Pan M, Zeng D, Tang Y (2009) Feasibility investigations on multi-cutter milling process: a novel fabrication method for microreactors with multiple microchannels. J Power Sources 192:562–572. https://doi.org/10.1016/j.jpowsour.2009.03.024

    Article  Google Scholar 

  49. Cheema MS, Dvivedi A, Sharma AK (2015) Tool wear studies in fabrication of microchannels in ultrasonic micromachining. Ultrasonics 57:57–64. https://doi.org/10.1016/j.ultras.2014.10.018

    Article  Google Scholar 

  50. Diao K, Zhao Y (2019) Heat transfer performance of sintered Cu microchannels produced by a novel method. Int J Heat Mass Transf 139:537–547. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.020

    Article  Google Scholar 

  51. Collins IL, Weibel JA, Pan L, Garimella SV (2019) A permeable-membrane microchannel heat sink made by additive manufacturing. Int J Heat Mass Transf 131:1174–1183. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.126

    Article  Google Scholar 

  52. Haghighinia A, Movahedirad S (2019) Fluid micro-mixing in a passive microchannel: comparison of 2D and 3D numerical simulations. Int J Heat Mass Transf 139:907–916. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.084

    Article  Google Scholar 

  53. Salah SAS, Filali EG, Djellouli S (2017) Numerical investigation of Reynolds number and scaling effects in micro-channels flows. J Hydrodyn 29:647–658. https://doi.org/10.1016/S1001-6058(16)60777-1

    Article  Google Scholar 

  54. Zhou YL, Chang H (2019) Numerical simulation of hydrodynamic and heat transfer characteristics of slug flow in serpentine microchannel with various curvature ratio. Heat Mass Transf und Stoffuebertragung. https://doi.org/10.1007/s00231-019-02664-4

    Article  Google Scholar 

  55. Rostami J, Abbassi A (2016) Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method. Adv Powder Technol. https://doi.org/10.1016/j.apt.2015.10.003

    Article  Google Scholar 

  56. Li S, Chen R, Wang H et al (2015) Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method. Sci Bull 60:1911–1926. https://doi.org/10.1007/s11434-015-0924-7

    Article  Google Scholar 

  57. Wang Z, Li S, Chen R et al (2018) Numerical study on dynamic behaviors of the coalescence between the advancing liquid meniscus and multi-droplets in a microchannel using CLSVOF method. Comput Fluids 170:341–348. https://doi.org/10.1016/j.compfluid.2018.05.014

    Article  MathSciNet  MATH  Google Scholar 

  58. Ferrari A, Magnini M, Thome JR (2017) A flexible coupled level set and volume of fluid (flexCLV) method to simulate microscale two-phase flow in non-uniform and unstructured meshes. Int J Multiph Flow 91:276–295. https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.017

    Article  MathSciNet  Google Scholar 

  59. So RMC, Leung RCK, Kam EWS, Fu SC (2019) Progress in the development of a new lattice Boltzmann method. Comput Fluids 190:440–469. https://doi.org/10.1016/j.compfluid.2019.04.009

    Article  MathSciNet  MATH  Google Scholar 

  60. Che Sidik NA, Aisyah Razali S (2014) Lattice Boltzmann method for convective heat transfer of nanofluids—a review. Renew Sustain Energy Rev 38:864–875. https://doi.org/10.1016/j.rser.2014.07.001

    Article  Google Scholar 

  61. Yang L, Yu Y, Pei H et al (2019) Lattice Boltzmann simulations of liquid flows in microchannel with an improved slip boundary condition. Chem Eng Sci 202:105–117. https://doi.org/10.1016/j.ces.2019.03.032

    Article  Google Scholar 

  62. Cai J, Huai X, Liu B, Cui Z (2018) Numerical prediction of thin liquid film near the solid wall for hydraulic cavitating flow in microchannel by a multiphase lattice Boltzmann model. Int J Heat Mass Transf 127:107–115. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.146

    Article  Google Scholar 

  63. Ghadirzadeh S, Kalteh M (2017) Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. Int J Mech Sci 133:524–534. https://doi.org/10.1016/j.ijmecsci.2017.09.013

    Article  Google Scholar 

  64. Kamali R, Soloklou MN, Hadidi H (2018) Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson–Nernst–Planck methods. Chem Phys 507:1–9. https://doi.org/10.1016/j.chemphys.2018.04.008

    Article  Google Scholar 

  65. Kumar P (2019) Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int J Therm Sci 136:33–43. https://doi.org/10.1016/j.ijthermalsci.2018.10.006

    Article  Google Scholar 

  66. Sahar AM, Wissink J, Mahmoud MM et al (2017) Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel. Appl Therm Eng 115:793–814. https://doi.org/10.1016/j.applthermaleng.2017.01.018

    Article  Google Scholar 

  67. Soleimanikutanaei S, Ghasemisahebi E, Lin CX (2018) Numerical study of heat transfer enhancement using transverse microchannels in a heat sink. Int J Therm Sci 125:89–100. https://doi.org/10.1016/j.ijthermalsci.2017.11.009

    Article  Google Scholar 

  68. Deng D, Chen L, Chen X, Pi G (2019) Heat transfer and pressure drop of a periodic expanded-constrained microchannels heat sink. Int J Heat Mass Transf 140:678–690. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.006

    Article  Google Scholar 

  69. Qasem NAA, Zubair SM (2018) Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations. Energy Convers Manag 173:555–601. https://doi.org/10.1016/j.enconman.2018.06.104

    Article  Google Scholar 

  70. Kim B (2016) An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels. Int J Heat Fluid Flow 62:224–232. https://doi.org/10.1016/j.ijheatfluidflow.2016.10.007

    Article  Google Scholar 

  71. Raj MS, Harivennkateswara R (2015) Using computational fluid dynamics and analysis of microchannel heat sink. International Journal of Engineering Inventions 4:67–74

    Google Scholar 

  72. Hajmohammadi MR, Alipour P, Parsa H (2018) Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int J Heat Mass Transf 126:808–815. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.037

    Article  Google Scholar 

  73. Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45:3973–3985. https://doi.org/10.1016/S0017-9310(02)00101-1

    Article  MATH  Google Scholar 

  74. Kewalramani GV, Hedau G, Saha SK, Agrawal A (2019) Empirical correlation of laminar forced convective flow in trapezoidal microchannel based on experimental and 3D numerical study. Int J Therm Sci 142:422–433. https://doi.org/10.1016/j.ijthermalsci.2019.05.001

    Article  Google Scholar 

  75. Ghani IA, Kamaruzaman N, Sidik NAC (2017) Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transf 108:1969–1981. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046

    Article  Google Scholar 

  76. Wang G, Qian N, Ding G (2019) Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int J Heat Mass Transf 136:597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.018

    Article  Google Scholar 

  77. Chai L, Xia GD, Wang HS (2016) Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl Therm Eng 92:32–41. https://doi.org/10.1016/j.applthermaleng.2015.09.071

    Article  Google Scholar 

  78. Prajapati YK (2019) Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int J Heat Mass Transf 137:1041–1052. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.012

    Article  Google Scholar 

  79. Xie J, Yan H, Sundén B, Xie G (2019) The influences of sidewall proximity on flow and thermal performance of a microchannel with large-row pin-fins. Int J Therm Sci 140:8–19. https://doi.org/10.1016/j.ijthermalsci.2019.02.031

    Article  Google Scholar 

  80. Chandra AK, Kishor K, Mishra PK, Siraj Alam M (2015) Numerical simulation of heat transfer enhancement in periodic converging-diverging microchannel. Procedia Eng 127:95–101. https://doi.org/10.1016/j.proeng.2015.11.431

    Article  Google Scholar 

  81. Xia GD, Wang W, Jia YT, et al (2019) Accepted manuscript

  82. Liu H, Qi D, Shao X, Wang W (2019) An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks. Int J Therm Sci 142:106–120. https://doi.org/10.1016/j.ijthermalsci.2019.04.006

    Article  Google Scholar 

  83. Liu Y, Xu G, Sun J, Li H (2015) Investigation of the roughness effect on flow behavior and heat transfer characteristics in microchannels. Int J Heat Mass Transf 83:11–20. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.060

    Article  Google Scholar 

  84. Guo L, Xu H, Gong L (2015) Influence of wall roughness models on fluid flow and heat transfer in microchannels. Appl Therm Eng 84:399–408. https://doi.org/10.1016/j.applthermaleng.2015.04.001

    Article  Google Scholar 

  85. Yuan X, Tao Z, Li H, Tian Y (2016) Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels. Chin J Aeronaut 29:1575–1581. https://doi.org/10.1016/j.cja.2016.10.006

    Article  Google Scholar 

  86. Zhang J, Diao YH, Zhao YH, Zhang YN (2014) An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube. Appl Therm Eng 65:209–218. https://doi.org/10.1016/j.applthermaleng.2014.01.008

    Article  Google Scholar 

  87. Ji Y, Yuan K, Chung JN (2006) Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. Int J Heat Mass Transf 49:1329–1339. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.011

    Article  MATH  Google Scholar 

  88. Raja Kuppusamy N, Saidur R, Ghazali NNN, Mohammed HA (2014) Numerical study of thermal enhancement in micro channel heat sink with secondary flow. Int J Heat Mass Transf 78:216–223. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.072

    Article  Google Scholar 

  89. Shi X, Li S, Mu Y, Yin B (2019) Geometry parameters optimization for a microchannel heat sink with secondary flow channel. Int Commun Heat Mass Transf 104:89–100. https://doi.org/10.1016/j.icheatmasstransfer.2019.03.009

    Article  Google Scholar 

  90. Michna GJ, Browne EA, Peles Y, Jensen MK (2009) Single-phase microscale jet stagnation point heat transfer. J Heat Transfer 131:1–8. https://doi.org/10.1115/1.3154750

    Article  Google Scholar 

  91. Elison B, Webb BW (1994) Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes. Int J Heat Mass Transf 37:1207–1216. https://doi.org/10.1016/0017-9310(94)90206-2

    Article  Google Scholar 

  92. Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37:1687–1697. https://doi.org/10.1016/0017-9310(94)90059-0

    Article  Google Scholar 

  93. Sabato M, Fregni A, Stalio E et al (2019) Numerical study of submerged impinging jets for power electronics cooling. Int J Heat Mass Transf 141:707–718. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.081

    Article  Google Scholar 

  94. Nadda R, Kumar A, Maithani R (2018) Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: a review. Renew Sustain Energy Rev 93:331–353. https://doi.org/10.1016/j.rser.2018.05.025

    Article  Google Scholar 

  95. Qiu L, Dubey S, Choo FH, Duan F (2015) Recent developments of jet impingement nucleate boiling. Int J Heat Mass Transf 89:42–58. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.025

    Article  Google Scholar 

  96. Abo-Zahhad EM, Ookawara S, Radwan A et al (2019) Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell. Appl Energy 253:113538. https://doi.org/10.1016/j.apenergy.2019.113538

    Article  Google Scholar 

  97. Zhang Y, Wang S, Ding P (2017) Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int J Heat Mass Transf 113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092

    Article  Google Scholar 

  98. Husain A, Ariz M, Al-Rawahi NZH, Ansari MZ (2016) Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink. Appl Therm Eng 102:989–1000. https://doi.org/10.1016/j.applthermaleng.2016.03.048

    Article  Google Scholar 

  99. Naphon P, Nakharintr L, Wiriyasart S (2018) Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink. Int J Heat Mass Transf 126:924–932. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.101

    Article  Google Scholar 

  100. Vutha AK, Rozenfeld T, Shin JH et al (2018) Spatial temperature resolution in single-phase micro slot jet impingement cooling. Int J Heat Mass Transf 118:720–733. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.048

    Article  Google Scholar 

  101. Naphon P, Wiriyasart S, Arisariyawong T, Nakharintr L (2019) ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int J Heat Mass Transf 131:329–340. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.073

    Article  Google Scholar 

  102. Robinson AJ, Schnitzler E (2007) An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer. Exp Therm Fluid Sci 32:1–13. https://doi.org/10.1016/j.expthermflusci.2006.12.006

    Article  Google Scholar 

  103. Kim SH, Shin HC, Kim SM (2019) Numerical study on cooling performance of hybrid micro-channel/micro-jet-impingement heat sink. J Mech Sci Technol 33:3555–3562. https://doi.org/10.1007/s12206-019-0649-7

    Article  Google Scholar 

  104. Huang X, Yang W, Ming T et al (2017) Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. Int J Heat Mass Transf 112:113–124. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.078

    Article  Google Scholar 

  105. Yang YT, Tsai KT, Wang YH, Lin SH (2014) Numerical study of microchannel heat sink performance using nanofluids. Int Commun Heat Mass Transf 57:27–35. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.006

    Article  Google Scholar 

  106. Ghale ZY, Haghshenasfard M, Esfahany MN (2015) Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. Int Commun Heat Mass Transf 68:122–129. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.012

    Article  Google Scholar 

  107. Alfaryjat AA, Mohammed HA, Adam NM et al (2018) Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink. Therm Sci Eng Prog 5:252–262. https://doi.org/10.1016/j.tsep.2017.12.003

    Article  Google Scholar 

  108. Abdollahi A, Mohammed HA, Vanaki SM, Sharma RN (2018) Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins. Ain Shams Eng J 9:3411–3418. https://doi.org/10.1016/j.asej.2017.05.011

    Article  Google Scholar 

  109. Li J, Kleinstreuer C (2008) Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow 29:1221–1232. https://doi.org/10.1016/j.ijheatfluidflow.2008.01.005

    Article  Google Scholar 

  110. Kuppusamy NR, Mohammed HA, Lim CW (2013) Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochim Acta 573:39–56. https://doi.org/10.1016/j.tca.2013.09.011

    Article  Google Scholar 

  111. Kuppusamy NR, Mohammed HA, Lim CW (2014) Thermal and hydraulic characteristics of nanofluid in a triangular grooved microchannel heat sink (TGMCHS). Appl Math Comput 246:168–183. https://doi.org/10.1016/j.amc.2014.07.087

    Article  MathSciNet  MATH  Google Scholar 

  112. Dong S, Jiang H, Xie Y et al (2019) Experimental investigation on boiling heat transfer characteristics of Al2O3–water nanofluids in swirl microchannels subjected to an acceleration force. Chin J Aeronaut 32:1136–1144. https://doi.org/10.1016/j.cja.2019.01.016

    Article  Google Scholar 

  113. Shi X, Li S, Wei Y, Gao J (2018) Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel. Int Commun Heat Mass Transf 90:111–120. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.007

    Article  Google Scholar 

  114. Saeed M, Kim MH (2018) Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf 120:671–682. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.075

    Article  Google Scholar 

  115. Anbumeenakshi C, Thansekhar MR (2017) On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl Therm Eng 113:1437–1443. https://doi.org/10.1016/j.applthermaleng.2016.11.144

    Article  Google Scholar 

  116. Martínez VA, Vasco DA, García-Herrera CM, Ortega-Aguilera R (2019) Numerical study of TiO2-based nanofluids flow in microchannel heat sinks: effect of the Reynolds number and the microchannel height. Appl Therm Eng 161:114130. https://doi.org/10.1016/j.applthermaleng.2019.114130

    Article  Google Scholar 

  117. Sakanova A, Keian CC, Zhao J (2015) Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf 89:59–74. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.033

    Article  Google Scholar 

  118. Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink. Adv Powder Technol 26:83–90. https://doi.org/10.1016/j.apt.2014.08.009

    Article  Google Scholar 

  119. Sarafraz MM, Yang B, Pourmehran O et al (2019) Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transf 107:24–33. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.004

    Article  Google Scholar 

  120. Bahiraei M, Jamshidmofid M, Goodarzi M (2019) Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq 273:88–98. https://doi.org/10.1016/j.molliq.2018.10.003

    Article  Google Scholar 

  121. Manay E, Akyürek EF, Sahin B (2018) Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys 9:615–624. https://doi.org/10.1016/j.rinp.2018.03.013

    Article  Google Scholar 

  122. Al-Rashed AAAA, Shahsavar A, Entezari S et al (2019) Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng 155:247–258. https://doi.org/10.1016/j.applthermaleng.2019.04.009

    Article  Google Scholar 

  123. Alfaryjat AA, Dobrovicescu A, Stanciu D (2019) Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink. Chin J Chem Eng 27:501–513. https://doi.org/10.1016/j.cjche.2018.08.009

    Article  Google Scholar 

  124. Abdullina KI, Bogovalov SV (2015) 3-D numerical modeling of MHD flows in variable magnetic field. Phys Procedia 72:351–357. https://doi.org/10.1016/j.phpro.2015.09.109

    Article  Google Scholar 

  125. Gajbhiye NL, Eswaran V (2018) MHD buoyant flow in a cubical enclosure at low to high Hartmann number. Int J Therm Sci 134:168–178. https://doi.org/10.1016/j.ijthermalsci.2018.07.028

    Article  Google Scholar 

  126. Xiao X, Kim CN (2016) Numerical analysis of an MHD micro-device with simultaneous mixing and pumping capability. J Ind Eng Chem 38:23–36. https://doi.org/10.1016/j.jiec.2016.04.001

    Article  Google Scholar 

  127. Kang HJ, Choi B (2011) Development of the MHD micropump with mixing function. Sens Actuators A Phys 165:439–445. https://doi.org/10.1016/j.sna.2010.11.011

    Article  Google Scholar 

  128. Das C, Wang G, Payne F (2013) Some practical applications of magnetohydrodynamic pumping. Sens Actuators A Phys 201:43–48. https://doi.org/10.1016/j.sna.2013.06.023

    Article  Google Scholar 

  129. Al-Habahbeh OM, Al-Saqqa M, Safi M, Abo Khater T (2016) Review of magnetohydrodynamic pump applications. Alex Eng J 55:1347–1358. https://doi.org/10.1016/j.aej.2016.03.001

    Article  Google Scholar 

  130. Xiao X, Kim CN (2014) Magnetohydrodynamic flows in a hairpin duct under a magnetic field applied perpendicular to the plane of flow. Appl Math Comput 240:1–15. https://doi.org/10.1016/j.amc.2014.04.049

    Article  MathSciNet  MATH  Google Scholar 

  131. Bennia A, Bouaziz MN (2017) CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid in the presence of a magnetic field. J Taiwan Inst Chem Eng 78:127–136. https://doi.org/10.1016/j.jtice.2017.04.035

    Article  Google Scholar 

  132. Motozawa M, Chang J, Sawada T, Kawaguchi Y (2010) Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Phys Procedia 9:190–193. https://doi.org/10.1016/j.phpro.2010.11.043

    Article  Google Scholar 

  133. Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ (2015) Numerical study of magnetic field effect on nano-fluid forced convection in a channel. J Magn Magn Mater 374:11–17. https://doi.org/10.1016/j.jmmm.2014.08.001

    Article  Google Scholar 

  134. Sheikholeslami M, Ganji DD, Gorji-Bandpy M, Soleimani S (2014) Magnetic field effect on nanofluid flow and heat transfer using KKL model. J Taiwan Inst Chem Eng 45:795–807. https://doi.org/10.1016/j.jtice.2013.09.018

    Article  Google Scholar 

  135. Kiyasatfar M, Pourmahmoud N (2016) Laminar MHD flow and heat transfer of power-law fluids in square microchannels. Int J Therm Sci 99:26–35. https://doi.org/10.1016/j.ijthermalsci.2015.07.031

    Article  Google Scholar 

  136. Jha BK, Malgwi PB, Aina B (2018) Hall effects on MHD natural convection flow in a vertical microchannel. Alex Eng J 57:983–993. https://doi.org/10.1016/j.aej.2017.01.038

    Article  Google Scholar 

  137. Yang C, Jian Y, Xie Z, Li F (2019) Heat transfer characteristics of magnetohydrodynamic electroosmotic flow in a rectangular microchannel. Eur J Mech B/Fluids 74:180–190. https://doi.org/10.1016/j.euromechflu.2018.11.015

    Article  MathSciNet  Google Scholar 

  138. Rashidi MM, Nasiri M, Khezerloo M, Laraqi N (2016) Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater 401:159–168. https://doi.org/10.1016/j.jmmm.2015.10.034

    Article  Google Scholar 

  139. Ibáñez G, Cuevas S (2010) Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel. Energy 35:4149–4155. https://doi.org/10.1016/j.energy.2010.06.035

    Article  Google Scholar 

  140. Jayaramu P, Gedupudi S, Das SK (2019) Influence of heating surface characteristics on flow boiling in a copper microchannel: experimental investigation and assessment of correlations. Int J Heat Mass Transf 128:290–318. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.075

    Article  Google Scholar 

  141. Karayiannis TG, Mahmoud MM (2017) Flow boiling in microchannels: fundamentals and applications. Appl Therm Eng 115:1372–1397. https://doi.org/10.1016/j.applthermaleng.2016.08.063

    Article  Google Scholar 

  142. Thome JR (2006) State-of-the-art overview of boiling and two-phase flows in microchannels. Heat Transf Eng 27:4–19. https://doi.org/10.1080/01457630600845481

    Article  Google Scholar 

  143. Bertsch SS, Groll EA, Garimella SV (2009) Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels. Int J Multiph Flow 35:142–154. https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.004

    Article  Google Scholar 

  144. Mathew J, Lee PS, Wu T, Yap CR (2019) Experimental study of flow boiling in a hybrid microchannel-microgap heat sink. Int J Heat Mass Transf 135:1167–1191. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.033

    Article  Google Scholar 

  145. Luo Y, Li J, Zhou K et al (2019) A numerical study of subcooled flow boiling in a manifold microchannel heat sink with varying inlet-to-outlet width ratio. Int J Heat Mass Transf 139:554–563. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.030

    Article  Google Scholar 

  146. Wang H, Yang Y, He M, Qiu H (2019) Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces. Int J Heat Mass Transf 140:587–597. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.027

    Article  Google Scholar 

  147. Xia G, Lv Y, Cheng L et al (2019) Experimental study and dynamic simulation of the continuous two-phase instable boiling in multiple parallel microchannels. Int J Heat Mass Transf 138:961–984. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.124

    Article  Google Scholar 

  148. Vozhakov IS, Ronshin FV (2019) Experimental and theoretical study of two-phase flow in wide microchannels. Int J Heat Mass Transf 136:312–323. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.099

    Article  Google Scholar 

  149. Yang Q, Zhao J, Huang Y et al (2019) A diamond made microchannel heat sink for high-density heat flux dissipation. Appl Therm Eng 158:113804. https://doi.org/10.1016/j.applthermaleng.2019.113804

    Article  Google Scholar 

  150. Zhang C, Zhang L, Xu H et al (2017) Investigation of flow boiling performance and the resulting surface deposition of graphene oxide nanofluid in microchannels. Exp Therm Fluid Sci 86:1–10. https://doi.org/10.1016/j.expthermflusci.2017.03.028

    Article  Google Scholar 

  151. Bogojevic D, Sefiane K, Duursma G, Walton AJ (2013) Bubble dynamics and flow boiling instabilities in microchannels. Int J Heat Mass Transf 58:663–675. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.038

    Article  Google Scholar 

  152. Ho CJ, Chiou YH, Yan WM, Ghalambaz M (2019) Transient cooling characteristics of Al2O3–water nanofluid flow in a microchannel subject to a sudden-pulsed heat flux. Int J Mech Sci 151:95–105. https://doi.org/10.1016/j.ijmecsci.2018.11.017

    Article  Google Scholar 

  153. Bandyopadhyay S, Chakraborty S (2018) Thermophoretically driven capillary transport of nanofluid in a microchannel. Adv Powder Technol 29:964–971. https://doi.org/10.1016/j.apt.2018.01.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Karthikeya Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, K.N., Sharma, T.K. & Rao, G.A.P. Latest Advancements in Heat Transfer Enhancement in the Micro-channel Heat Sinks: A Review. Arch Computat Methods Eng 28, 3135–3165 (2021). https://doi.org/10.1007/s11831-020-09495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09495-1

Navigation