Skip to main content
Log in

A Comprehensive Study on Computational Pansharpening Techniques for Remote Sensing Images

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Real-time remote sensing imaging systems require high spatial resolution multispectral images. However, the remote sensing images obtained from a single satellite sensor do not provide a significant amount of information. Therefore, pansharpening techniques are desirable to provide high spatial resolution multispectral images. The hyperspectral pansharpening techniques are used to fuse the hyperspectral (HS) and the panchromatic (PAN) images to obtain an HS image with a significant amount of spatial and spectral information. The main objective of this paper is to provide a comprehensive review of the pansharpening techniques. Various categories of pansharpening techniques are also discussed. This paper provides three different summaries: initially, the conceptual aspects of pansharpening techniques are discussed. Thereafter, the comparative analyses are performed to evaluate the benefits and shortcomings of the existing pansharpening techniques. Finally, challenges and opportunities for future research in the field of pansharpening are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carvalho TP, Soares FAAMN, Vita R, da Francisco R, Basto JP, Alcalá SGS (2019) A systematic literature review of machine learning methods applied to predictive maintenance. Comput Ind Eng 137:106024

    Google Scholar 

  2. Jagalingam P, Hegde AV (2015) A review of quality metrics for fused image. Aquatic Procedia 4:133–142

    Google Scholar 

  3. Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A (2020) A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res 119:104926

    MathSciNet  MATH  Google Scholar 

  4. Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005) A comparative analysis of image fusion methods. IEEE Trans Geosci Remote Sens 43(6):1391–1402

    Google Scholar 

  5. Meng X, Shen H, Li H, Zhang L, Randi Fu (2019) Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inform Fusion 46:102–113

    Google Scholar 

  6. Shah VP, Younan NH, King RL (2008) An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans Geosci Remote Sens 46(5):1323–1335

    Google Scholar 

  7. Ye F, Guo Y, Zhuang P (2019) Pan-sharpening via a gradient-based deep network prior. Signal Process: Image Commun 74:322–331

    Google Scholar 

  8. Waring J, Lindvall C, Umeton R (2020) Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med 104:101822

    Google Scholar 

  9. Vivone G, Alparone L, Chanussot J, Mura MD, Garzelli A, Licciardi GA, Restaino R, Wald L (2014) A critical comparison among pansharpening algorithms. EEE Trans Geosci Remote Sens 53(5):2565–2586

    Google Scholar 

  10. Restaino R, Vivone G, Mura MD, Chanussot J (2016) Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans Image Process 25(6):2882–2895

    MathSciNet  MATH  Google Scholar 

  11. Alimuddin I, Sumantyo JTS, Kuze H (2012) Assessment of pan-sharpening methods applied to image fusion of remotely sensed multi-band data. Int J Appl Earth Obs Geoinf 18:165–175

    Google Scholar 

  12. Kulkarni SC, Rege PP (2020) Pixel level fusion techniques for SAR and optical images: a review. Inform Fusion

  13. Masi G, Cozzolino D, Verdoliva L, Scarpa G (2016) Pansharpening by convolutional neural networks. Remote Sens 8(7):594

    Google Scholar 

  14. Zhang L, Zhang L, Bo Du (2016) Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Google Scholar 

  15. Ghahremani M, Ghassemian H (2016) Nonlinear IHS: A promising method for pan-sharpening. IEEE Geosci Remote Sens Lett 13(11):1606–1610

    Google Scholar 

  16. Choi M, Kim RY, Nam M-R, Kim HO (2005) Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geosci Remote Sens Lett 2(2):136–140

    Google Scholar 

  17. Aiazzi B, Baronti S, Selva M (2007) Improving component substitution pansharpening through multivariate regression of MS $+ $ Pan data. IEEE Trans Geosci Remote Sens 45(10):3230–3239

    Google Scholar 

  18. Garzelli A, Nencini F (2007) Panchromatic sharpening of remote sensing images using a multiscale Kalman filter. Pattern Recogn 40(12):3568–3577

    MATH  Google Scholar 

  19. Khan MM, Chanussot J, Condat L, Montanvert A (2008) Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci Remote Sens Lett 5(1):98–102

    Google Scholar 

  20. Fasbender D, Radoux J, Bogaert P (2008) Bayesian data fusion for adaptable image pansharpening. IEEE Trans Geosci Remote Sens 46(6):1847–1857

    Google Scholar 

  21. Aanæs H, Sveinsson JR, Nielsen AA, Bovith T, Benediktsson JA (2008) Model-based satellite image fusion.". IEEE Trans Geosci Remote Sens 46(5):1336–1346

    Google Scholar 

  22. Khan MM, Alparone L, Chanussot J (2009) Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Transa Geosci Remote Sens 47(11):3880–3891

    Google Scholar 

  23. Rahmani S, Strait M, Merkurjev D, Moeller M, Wittman T (2010) An adaptive IHS pan-sharpening method. IEEE Geosci Remote Sens Lett 7(4):746–750

    Google Scholar 

  24. Mitianoudis N, Tzimiropoulos G, Stathaki T (2010) Fast wavelet-based pansharpening of multi-spectral images. In: 2010 IEEE international conference on imaging systems and techniques. IEEE, pp 11–16

  25. Li S, Yang B (2010) A new pan-sharpening method using a compressed sensing technique. IEEE Trans Geosci Remote Sens 49(2):738–746

    Google Scholar 

  26. Massip P, Blanc P, Wald L (2011) A method to better account for modulation transfer functions in ARSIS-based pansharpening methods. IEEE Trans Geosci Remote Sens 50(3):800–808

    Google Scholar 

  27. Aly HA, Sharma G (2014) A regularized model-based optimization framework for pan-sharpening. IEEE Trans Image Process 23(6):2596–2608

    MathSciNet  MATH  Google Scholar 

  28. El-Mezouar MC, Kpalma K, Taleb N, Ronsin J (2014) A pan-sharpening based on the non-subsampled contourlet transform: application to worldview-2 imagery. IEEE J Select Top Appl Earth Observ Remote Sens 7(5):1806–1815

    Google Scholar 

  29. Kaplan NH, Erer I (2014) Bilateral filtering-based enhanced pansharpening of multispectral satellite images. IEEE Geosci Remote Sens Lett 11(11):1941–1945

    Google Scholar 

  30. Chen C, Li Y, Liu W, Huang J (2015) SIRF: Simultaneous satellite image registration and fusion in a unified framework. IEEE Trans Image Process 24(11):4213–4224

    MathSciNet  MATH  Google Scholar 

  31. Jameel A, Riaz MM, Ghafoor A (2015) Guided filter and IHS-based pan-sharpening. IEEE Sensors J 16(1):192–194

    Google Scholar 

  32. Restaino R, Mura MD, Vivone G, Chanussot J (2016) "Context-adaptive pansharpening based on image segmentation. IEEE Trans Geosci Remote Sens 55(2):753–766

    MATH  Google Scholar 

  33. Palsson F, Sveinsson JR, Ulfarsson MO, Benediktsson JA (2016) MTF-based deblurring using a wiener filter for CS and MRA pansharpening methods. IEEE J Select Top Appl Earth Observ Remote Sens 9(6):2255–2269

    Google Scholar 

  34. Zheng Y, Dai Q, Zhigang Tu, Wang L (2017) Guided image filtering-based pan-sharpening method: A case study of GaoFen-2 imagery. ISPRS Int J Geo-Inform 6(12):404

    Google Scholar 

  35. Saeedi J, Faez K (2011) A new pan-sharpening method using multiobjective particle swarm optimization and the shiftable contourlet transform. ISPRS J Photogramm Remote Sens 66(3):365–381

    Google Scholar 

  36. Shen H, Meng X, Zhang L (2016) An integrated framework for the spatio–temporal–spectral fusion of remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7135–7148

    Google Scholar 

  37. Ourabia S, Smara Y (2016) A new pansharpening approach based on nonsubsampled contourlet transform using enhanced PCA applied to SPOT and ALSAT-2A satellite images. Journal of the Indian Society of Remote Sensing 44(5):665–674

    Google Scholar 

  38. Kotwal K, Chaudhuri S (2013) A novel approach to quantitative evaluation of hyperspectral image fusion techniques. Inform Fusion 14(1):5–18

    Google Scholar 

  39. Yang Y, Wan W, Huang S, Lin P, Que Y (2017) A novel pan-sharpening framework based on matting model and multiscale transform. Remote Sens 9(4):391

    Google Scholar 

  40. Yilmaz CS, Yilmaz V, Gungor O, Shan J (2019) Metaheuristic pansharpening based on symbiotic organisms search optimization. ISPRS J Photogramm Remote Sens 158:167–187

    Google Scholar 

  41. Jiang C, Zhang H, Shen H, Zhang L (2013) Two-step sparse coding for the pan-sharpening of remote sensing images. IEEE J Select Top Appl Earth Observ Remote Sens 7(5):1792–1805

    Google Scholar 

  42. Garzelli A (2014) Pansharpening of multispectral images based on nonlocal parameter optimization. IEEE Trans Geosci Remote Sens 53(4):2096–2107

    Google Scholar 

  43. Zhu XX, Bamler R (2012) A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans Geosci Remote Sens 51(5):2827–2836

    Google Scholar 

  44. Guo M, Zhang H, Li J, Zhang L, Shen H (2014) An online coupled dictionary learning approach for remote sensing image fusion. IEEE J Select Top Appl Earth Observ Remote Sens 7(4):1284–1294

    Google Scholar 

  45. Huang W, Xiao L, Wei Z, Liu H, Tang S (2015) A new pan-sharpening method with deep neural networks. IEEE Geosci Remote Sens Lett 12(5):1037–1041

    Google Scholar 

  46. Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Google Scholar 

  47. Wei Y, Yuan Q, Shen H, Zhang L (2017) Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci Remote Sens Lett 14(10):1795–1799

    Google Scholar 

  48. Yang J, Fu X, Hu Y, Huang Y, Ding X, Paisley J (2017) PanNet: A deep network architecture for pan-sharpening. In: Proceedings of the IEEE international conference on computer vision, pp 5449–5457

  49. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155

    MathSciNet  MATH  Google Scholar 

  50. Dian R, Li S, Guo A, Fang L (2018) Deep hyperspectral image sharpening. IEEE Trans Neural Netw Learn Syst 99:1–11

    MathSciNet  Google Scholar 

  51. Yuhendra J, Kuze H (2011) Performance analyzing of high-resolution pan-sharpening techniques: Increasing image Quality for Classification using supervised kernel support vector machine. Res J Inform Technol 8(1):12–28

    Google Scholar 

  52. Turker M, Koc-San D (2015) Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping. Int J Appl Earth Obs Geoinf 34:58–69

    Google Scholar 

  53. Nieto PJG, Garcia-Gonzalo E, Sánchez Lasheras F, Javier de Cos Juez F (2015) Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab Eng Syst Saf 138:219–231

    Google Scholar 

  54. Möller M, Wittman T, Bertozzi AL, Burger M (2012) A variational approach for sharpening high dimensional images. SIAM J Imaging Sci 5(1):150–178

    MathSciNet  MATH  Google Scholar 

  55. Ballester C, Caselles V, Igual L, Verdera J, Rougé B (2006) A variational model for P+ XS image fusion. Int J Comput Vis 69(1):43–58

    Google Scholar 

  56. Fang F, Zhang G, Li F, Shen C (2014) Framelet based pan-sharpening via a variational method. Neurocomputing 129:362–377

    Google Scholar 

  57. Zhang HK, Huang Bo (2015) A new look at image fusion methods from a Bayesian perspective. Remote Sens 7(6):6828–6861

    Google Scholar 

  58. Liu P, Xiao L, Li T (2017) A variational pan-sharpening method based on spatial fractional-order geometry and spectral–spatial low-rank priors. IEEE Trans Geosci Remote Sens 56(3):1788–1802

    Google Scholar 

  59. Fu X, Lin Z, Huang Y, Ding X (2019) A variational pan-sharpening with local gradient constraints. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 10265–10274

  60. Zeng Y, Huang W, Liu M, Zhang H, Zou B (2010) Fusion of satellite images in urban area: assessing the quality of resulting images. In: 2010 18th international conference on geoinformatics. IEEE, pp 1–4

  61. Agudelo-Medina OA, Benitez-Restrepo HD, Vivone G, Bovik A (2019) Perceptual quality assessment of pan-sharpened images. Remote Sens 11(7):877

    Google Scholar 

  62. Zhang Y (2008) Methods for image fusion quality assessment-a review, comparison and analysis. Int Arch Photogramm Remote Sens Spat Inform Sci 37(PART B7):1101–1109

  63. Imani M, Ghassemian H (2020) An overview on spectral and spatial information fusion for hyperspectral image classification: current trends and challenges. Inform Fusion 59:59–83

    Google Scholar 

  64. Wang X, Bai S, Li Z, Song R, Tao J (2019) The PAN and MS image pansharpening algorithm based on adaptive neural network and sparse representation in the NSST domain. IEEE Access 7:52508–52521

    Google Scholar 

  65. Tsagkatakis G, Aidini A, Fotiadou K, Giannopoulos M, Pentari A, Tsakalides P (2019) Survey of deep-learning approaches for remote sensing observation enhancement. Sensors 19(18):3929

    Google Scholar 

  66. Zhao W, Dai Q, Zheng Y, Wang L (2016) A new pansharpen method based on guided image filtering: A case study over Gaofen-2 imagery. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3766–3769

  67. Basavegowda HS, Dagnew G (2020) Deep learning approach for microarray cancer data classification. CAAI Trans Intell Technol 5(1):22–33

    Google Scholar 

  68. Das NN, Kumar N, Kaur M, Kumar V, Singh D (2020) Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM

  69. Ghosh S, Shivakumara P, Roy P, Pal U, Lu T (2020) Graphology based handwritten character analysis for human behaviour identification. CAAI Trans Intell Technol 5(1):55–65

    Google Scholar 

  70. Singh D, Garg D, Pannu HS (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114

    Google Scholar 

  71. Gupta B, Tiwari M, Lamba SS (2019) Visibility improvement and mass segmentation of mammogram images using quantile separated histogram equalisation with local contrast enhancement. CAAI Trans Intell Technol 4(2):73–79

    Google Scholar 

  72. Kaur M, Singh D (2020) Fusion of medical images using deep belief networks. Cluster Comput 23:1439–1453. https://doi.org/10.1007/s10586-019-02999-x

    Article  Google Scholar 

  73. Osterland S, Weber J (2019) Analytical analysis of single-stage pressure relief valves. Int J Hydromech 2(1):32–53

    Google Scholar 

  74. Singh D, Kaur M, Singh H (2018) Remote sensing image fusion using fuzzy logic and gyrator transform. Remote Sens Lett 9(10):942–951

    Google Scholar 

  75. Wang R, Yu H, Wang G, Zhang G, Wang W (2019) Study on the dynamic and static characteristics of gas static thrust bearing with micro-hole restrictors. Int J Hydromech 2(3):189–202

    Google Scholar 

  76. Kaur M, Singh D (2020) Multi-modality medical image fusion technique using multi-objective differential evolution based deep neural networks. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02386-0

    Article  Google Scholar 

  77. Wiens T (2019) Engine speed reduction for hydraulic machinery using predictive algorithms. Int J Hydromech 2(1):16–31

    Google Scholar 

  78. Kaur M, Singh D, Kumar V, Sun K (2020) Color image dehazing using gradient channel prior and guided L0 filter. Inf Sci 521:326–342

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Saini, K.S., Singh, D. et al. A Comprehensive Study on Computational Pansharpening Techniques for Remote Sensing Images. Arch Computat Methods Eng 28, 4961–4978 (2021). https://doi.org/10.1007/s11831-021-09565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09565-y

Navigation