Skip to main content
Log in

From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The advancement in electromagnetic metamaterials, which commenced three decades ago, experienced a rapid transformation into acoustic and elastic systems in the forms of phononic crystals and acoustic/elastic metamaterials. Since its early discovery, numerous wave phenomena alongside the possible engineering applications have been highlighted. The existing and emerging fields of metamaterials are far more extensive, ranging from optics to acoustic, and all the way to the elastic systems. Numerous fantastic dynamic properties in optics and acoustic/elastic systems have been reported to date, which cannot be found in naturally occurring materials. The present review tends to discuss the historical context, current progresses and possible future outcomes of metamaterials. The fascinating phenomena observed in optics/electromagnetic metamaterials have been explained and linked with acoustic and elastic counterparts. The idea of perfect lens that is governed by negative permittivity and negative permeability via left-handed materials with negative refractive index properties and the transformation optics for invisibility cloaks and optical rainbow effect alongside the hyperbolic metamaterials are reviewed and discussed. Furthermore, the associated transformation into acoustic and elastic focusing effects via graded index metamaterials, acoustic/elastic invisibility cloaks, transformational acoustics, and seismology and metawedges resembling optical rainbow effects and the likes are explained. The present state of the art has been examined and the physics involved in the governing of those peculiar wave mechanisms has been highlighted. Starting from photonic crystals, phononic crystals and acoustic metamaterials, the present state of the art research in some subfields of acoustic metamaterials has been outlined, such as metasurfaces, topological phononic crystals and seismic metamaterials, the three exciting and emerging research topics. The substantial challenges involved in these realms are characterised and the possible future outcome is further evaluated. This review article may assist researchers and engineers to grasp the idea of metamaterials in not only photonic and phononic crystal systems, but also the counterpart subfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source: Scopus)

Fig. 2
Fig. 3

taken from electron micrographs of the fabricated structure (bottom). (A) a bump without a cloak. (B) A bump with a cloak. Figure reprinted with permission from Ergin et al. [38] © 2010, AAAS

Fig. 4

reproduced with permission from Xu et al. [77] © 2019, APS

Fig. 5

reproduced with permission from Urzhumov et al. [100] © 2010, APS

Fig. 6

reproduced with permission from Zhang et al. [47] © 2019, APS

Fig. 7
Fig. 8

© 2019, Wiley; (b, d) Smith et al. [137] © 2004, AIP; (c) Liu et al. [128] © 2007, AAAS

Fig. 9

© 2012, APS; (b) Poddubny et al. [142] © 2012, APS; (c) Chshelokova et al. [143] © 2012, AIP; (d) Siddiqui et al. [144] © 2011, Elsevier; (e) Ishii et al. [130] © 2013 Wiley

Fig. 10

reproduced with permission from Smith et al. [33] © 2000, APS. (b) Locally resonant sonic material: lead sphere coated unit cell along with band structure and transmission study curves. Locally resonant subwavelength bandgaps can be seen. Figure reproduced with permission from Liu et al. [160] © 2000, AAAS

Fig. 11

© 2009, Elsevier

Fig. 12

reproduced with permission from Hussein et al. [199] © 2013, Elsevier

Fig. 13

reproduced with permission from Acar et al. [212] © 2013, Elsevier and Yuksel et al. [214] © 2015, Elsevier

Fig. 14

reproduced with permission from Shen et al. [230] © 2014, APS

Fig. 15

© 2018, AIP

Fig.16

© 2019, Elsevier

Fig. 17

reproduced with permission from Zhou et al. [240] © 2020, Elsevier

Fig. 18

reproduced with permission from Ma et al. [277] © 2018, PNAS

Fig. 19

reproduced with permission from Li et al. [61] © 2019, Elsevier

Fig. 20

reproduced with permission from Babae et al. [278] © 2013, Wiley. (d) Programmable Hierarchical Kirigami. Figure obtained from Ning et al. [299] © 2020, Wiley

Fig. 21

reproduced with permission from Li Tiantian et al. [318] © 2017, Nature

Fig. 22.

reproduced with permission from Zhang et al. [336] © 2018, APS

Fig. 23

reproduced with permission from Zhou et al. [54] © 2019, Elsevier

Fig. 24

reproduced with permission from Pal et al. [359] © 2019, IOP

Fig. 25

reproduced with permission from Zhang et al. [336] © 2018, APS

Fig. 26

reproduced with permission from Huo et al. [361] © 2017, Nature

Fig. 27

reproduced with permission from Lee et al. [371] © 2019, APS

Fig. 28

reproduced with permission from Oudich et al. [380] © 2019, APS

Fig. 29

© 2018, Nature

Fig. 30

reproduced with permission from Xia et al. [343] © 2018, Wiley

Fig. 31

reproduced with permission from Lee et al. [403] © 2018, Elsevier

Fig. 32

reproduced with permission from Jacopo M et al. [395] © 2020, IOP

Fig. 33

reproduced with permission from Cao et al. [418] © 2020, APS

Fig. 34

reproduced with permission from Brule et al. [413] © 2014, APS

Fig. 35

reproduced with permission from Palermo et al. [434] © 2016, Nature

Fig. 36

reproduced with permission from Colombi et al. [9] © 2016, Nature

Fig. 37

reproduced with permission from Polermo et al. [445] © 2018, APS

Similar content being viewed by others

Data Availability

All data, models or code generated or used in this review article are available from the corresponding author by request.

Abbreviations

AMM:

Acoustic metamaterial

BG:

Bandgap

CMM:

Contemporary metamaterial

DL:

Deep learning

EM:

Electromagnetic

EMM:

Electromagnetic metamaterial

ENZ:

Epsilon near zero

FDTD:

Finite difference time domain

HMM:

Hyperbolic metamaterial

IA:

Inertial amplification

LHM:

Left-handed materials/media

LR:

Local resonance

MM:

Metamaterials

ML:

Machine learning

MS:

Metasurface

OC:

Optical cloaking

ORT:

Optical rainbow trapping

PBG:

Photonic bandgap

PC:

Photonic crystal

PnC:

Phononic crystal

PL:

Perfect lens

PWE:

Plane wave expansion

QHE:

Quantum hall effect

QSHE:

Quantum spin hall effect

QVHE:

Quantum valley hall effect

SAW:

Surface acoustic wave

SMM:

Seismic metamaterial

TA:

Transformation acoustics

THz:

Terahertz

TI:

Topological insulator

TO:

Transformation optics

TMM:

Topological phononic crystal/metamaterial.

TS:

Transformation seismology

References

  1. Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802. https://doi.org/10.1115/1.4026911

    Article  Google Scholar 

  2. Simovski CR (2009) Material parameters of metamaterials (a review). Opt Spectrosc 107(5):726. https://doi.org/10.1134/s0030400x09110101

    Article  Google Scholar 

  3. Davidovich MV (2019) Hyperbolic metamaterials: production, properties, applications, and prospects. Phys Usp 62(12):1173–1207. https://doi.org/10.3367/ufne.2019.08.038643

    Article  Google Scholar 

  4. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948–957. https://doi.org/10.1038/nphoton.2013.243

    Article  Google Scholar 

  5. Rybina MV, Limonova MF, Kivsharb YS (2019) Transition from photonic crystals to dielectric metamaterials. Photonic Cryst Metasurf Optoelectron 100:13–43

    Article  Google Scholar 

  6. Turpin JP, Bossard JA, Morgan KL, Werner DH, Werner PL (2014) Reconfigurable and tunable metamaterials: a review of the theory and applications. Int J Antennas Propag 2014:1–18

    Article  Google Scholar 

  7. Wang Y-F, Wang Y-Z, Wu B, Chen W, Wang Y-S (2020) Tunable and active phononic crystals and metamaterials. Appl Mech Rev 72(4):040801

    Article  Google Scholar 

  8. Pendry JB, Aubry A, Smith DR, Maier SA (2012) Transformation optics and subwavelength control of light. Science 337(6094):549–552. https://doi.org/10.1126/science.1220600

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombi A, Guenneau S, Roux P, Craster RV (2016) Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves. Sci Rep 6:25320. https://doi.org/10.1038/srep25320

    Article  Google Scholar 

  10. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8(10):248–248. https://doi.org/10.1088/1367-2630/8/10/248

    Article  Google Scholar 

  11. Yao K, Unni R, Zheng Y (2019) Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8(3):339–366. https://doi.org/10.1515/nanoph-2018-0183

    Article  Google Scholar 

  12. Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nat Rev Mater 2(11):17066. https://doi.org/10.1038/natrevmats.2017.66

    Article  Google Scholar 

  13. Ren X, Das R, Tran P, Ngo TD, Xie YM (2018) Auxetic metamaterials and structures: a review. Smart Mater Struct 27(2):023001

    Article  Google Scholar 

  14. Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris AN, Huang G, Haberman MR (2020) Nonreciprocity in acoustic and elastic materials. Nat Rev Mater. https://doi.org/10.1038/s41578-020-0206-0

    Article  Google Scholar 

  15. Banerjee A, Das R, Calius EP (2018) Waves in structured mediums or metamaterials: a review. Arch Comput Methods Eng 26(4):1029–1058. https://doi.org/10.1007/s11831-018-9268-1

    Article  MathSciNet  Google Scholar 

  16. Huang T-Y, Shen C, Jing Y (2016) Membrane- and plate-type acoustic metamaterials. J Acoust Soc Am 139(6):3240–3250. https://doi.org/10.1121/1.4950751

    Article  Google Scholar 

  17. Yan B, Wang K, Hu Z, Wu C, Zhang X (2017) Shunt damping vibration control technology: A review. Appl Sci 7(5):494

    Article  Google Scholar 

  18. Ma G, Xiao M, Chan CT (2019) Topological phases in acoustic and mechanical systems. Nat Rev Phys 1(4):281–294. https://doi.org/10.1038/s42254-019-0030-x

    Article  Google Scholar 

  19. Bacquet CL, Al Ba’ba’a H, Frazier MJ, Nouh M, Hussein MI (2018) Metadamping: dissipation emergence in elastic metamaterials. In: Hussein MI (ed.), Advances in crystals and elastic metamaterials Part 1. Advances in applied mechanics, vol 51, Elsevier, pp 115–164. https://doi.org/10.1016/bs.aams.2018.09.001

  20. Hussein MI, Tsai C-N, Honarvar H (2020) Thermal Conductivity Reduction in a Nanophononic Metamaterial versus a Nanophononic Crystal: A Review and Comparative Analysis. Adv Func Mater 30(8):1906718. https://doi.org/10.1002/adfm.201906718

    Article  Google Scholar 

  21. Zhang X, Qu Z, Wang H (2020) Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures. iScience 23(5):101110–101110. https://doi.org/10.1016/j.isci.2020.101110

    Article  Google Scholar 

  22. Jin Y, Djafari-Rouhani B, Torrent D (2019) Gradient index phononic crystals and metamaterials. Nanophotonics 8(5):685–701. https://doi.org/10.1515/nanoph-2018-0227

    Article  Google Scholar 

  23. Assouar B, Liang B, Wu Y, Li Y, Cheng J-C, Jing Y (2018) Acoustic metasurfaces. Nat Rev Mater 3(12):460–472. https://doi.org/10.1038/s41578-018-0061-4

    Article  Google Scholar 

  24. Yabin J, Yan P, Bernard B, Hossein H, Leonard D, Bahram D-R, Mahmoud IH (2021) Physics of surface vibrational resonances: Pillared phononic crystals, metamaterials, and metasurfaces. Reports on Progress in Physics

  25. Brûlé S, Enoch S, Guenneau S (2019) Role of nanophotonics in the birth of seismic megastructures. Nanophotonics. https://doi.org/10.1515/nanoph-2019-0106

    Article  Google Scholar 

  26. Brûlé S, Enoch S, Guenneau S (2020) Emergence of seismic metamaterials: Current state and future perspectives. Phys Lett A 384(1):126034. https://doi.org/10.1016/j.physleta.2019.126034

    Article  Google Scholar 

  27. Mu D, Shu H, Zhao L, An S (2020) A review of research on seismic metamaterials. Adv Eng Mater 22(4):1901148. https://doi.org/10.1002/adem.201901148

    Article  Google Scholar 

  28. Newton I (1686) Philosophiae naturalis principia mathematica. Imprimatur. s. Pepys Reg. soc. praeses

  29. Rayleigh JWS (1894) The theory of sound, vol 1. Macmillan, London (reprinted Dover, New York, 1945)

    MATH  Google Scholar 

  30. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966

    Article  Google Scholar 

  31. Veselago VG, Narimanov EE (2006) The left hand of brightness: past, present and future of negative index materials. Nat Mater 5(10):759–762. https://doi.org/10.1038/nmat1746

    Article  Google Scholar 

  32. Smith DR, Schultz S, Markoš P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104. https://doi.org/10.1103/PhysRevB.65.195104

    Article  Google Scholar 

  33. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187. https://doi.org/10.1103/PhysRevLett.84.4184

    Article  Google Scholar 

  34. Ziolkowski RW, Heyman E (2001) Wave propagation in media having negative permittivity and permeability. Phys Rev E Stat Nonlinear Soft Matter Phys 64(5 Pt 2):056625. https://doi.org/10.1103/PhysRevE.64.056625

    Article  Google Scholar 

  35. Leonhardt U (2006) Optical conformal mapping. Science 312(5781):1777–1780. https://doi.org/10.1126/science.1126493

    Article  MathSciNet  MATH  Google Scholar 

  36. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782. https://doi.org/10.1126/science.1125907

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsakmakidis KL, Reshef O, Almpanis E, Zouros GP, Mohammadi E, Saadat D, Sohrabi F, Fahimi-Kashani N, Etezadi D, Boyd RW, Altug H (2019) Ultrabroadband 3D invisibility with fast-light cloaks. Nat Commun 10(1):4859. https://doi.org/10.1038/s41467-019-12813-2

    Article  Google Scholar 

  38. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976):337–339. https://doi.org/10.1126/science.1186351

    Article  Google Scholar 

  39. Tsakmakidis KL, Boardman AD, Hess O (2007) ‘Trapped rainbow’ storage of light in metamaterials. Nature 450(7168):397–401. https://doi.org/10.1038/nature06285

    Article  Google Scholar 

  40. Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9(5):387–396. https://doi.org/10.1038/nmat2743

    Article  Google Scholar 

  41. Popa BI, Zigoneanu L, Cummer SA (2013) Tunable active acoustic metamaterials. Phys Rev B 88(2):024303. https://doi.org/10.1103/PhysRevB.88.024303

    Article  Google Scholar 

  42. Farhat M, Enoch S, Guenneau S, Movchan AB (2008) Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 101(13):134501. https://doi.org/10.1103/PhysRevLett.101.134501

    Article  Google Scholar 

  43. Cummer SA, Schurig D (2007) One path to acoustic cloaking. New J Phys 9:45. https://doi.org/10.1088/1367-2630/9/3/045

    Article  Google Scholar 

  44. Ning L, Wang Y-Z, Wang Y-S (2020) Active control cloak of the elastic wave metamaterial. Int J Solids Struct 202:126–135. https://doi.org/10.1016/j.ijsolstr.2020.06.009

    Article  Google Scholar 

  45. Zhu J, Chen Y, Zhu X, Garcia-Vidal FJ, Yin X, Zhang W, Zhang X (2013) Acoustic rainbow trapping. Sci Rep 3(1):1728. https://doi.org/10.1038/srep01728

    Article  Google Scholar 

  46. Zhao L, Zhou S (2019) Compact acoustic rainbow trapping in a bioinspired spiral array of graded locally resonant metamaterials. Sensors 19(4):788

    Article  MathSciNet  Google Scholar 

  47. Zhang Y, Luo Y, Pendry JB, Zhang B (2019) Transformation-Invariant Metamaterials. Phys Rev Lett 123(6):067701. https://doi.org/10.1103/PhysRevLett.123.067701

    Article  Google Scholar 

  48. Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6:27717. https://doi.org/10.1038/srep27717

    Article  Google Scholar 

  49. Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O (2015) Soft 3D acoustic metamaterial with negative index. Nat Mater 14(4):384–388. https://doi.org/10.1038/nmat4164

    Article  Google Scholar 

  50. Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47(4):610–617. https://doi.org/10.1016/j.ijengsci.2008.12.007

    Article  Google Scholar 

  51. Ding Y, Liu Z, Qiu C, Shi J (2007) Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 99(9):093904. https://doi.org/10.1103/PhysRevLett.99.093904

    Article  Google Scholar 

  52. Li Z, Wang C, Wang X (2019) Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int J Solids Struct 162:271–284. https://doi.org/10.1016/j.ijsolstr.2018.12.015

    Article  Google Scholar 

  53. Zhou WJ, Wu B, Muhammad, Du QJ, Huang GL, Lu CF, Chen WQ (2018) Actively tunable transverse waves in soft membrane-type acoustic metamaterials. J Appl Phys 123(16):165304. https://doi.org/10.1063/1.5015979

    Article  Google Scholar 

  54. Zhou W, Su Y, Muhammad, Lim CW (2020) Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials. Int J Mech Sci 172:105368. https://doi.org/10.1016/j.ijmecsci.2019.105368

    Article  Google Scholar 

  55. Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E Stat Nonlinear Soft Matter Phys 70(5 Pt 2):055602. https://doi.org/10.1103/PhysRevE.70.055602

    Article  Google Scholar 

  56. Cheng Y, Xu JY, Liu XJ (2008) One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys Rev B 77(4):1–10. https://doi.org/10.1103/PhysRevB.77.045134

    Article  Google Scholar 

  57. Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6):452–456. https://doi.org/10.1038/nmat1644

    Article  Google Scholar 

  58. D’Alessandro L, Zega V, Ardito R, Corigliano A (2018) 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci Rep 8(1):2262. https://doi.org/10.1038/s41598-018-19963-1

    Article  Google Scholar 

  59. Reda H, Rahali Y, Ganghoffer JF, Lakiss H (2016) Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos Struct 141:328–345. https://doi.org/10.1016/j.compstruct.2016.01.071

    Article  Google Scholar 

  60. Yasuda H, Yang J (2015) Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys Rev Lett 114(18):185502. https://doi.org/10.1103/PhysRevLett.114.185502

    Article  Google Scholar 

  61. Li J, Wang Y, Chen W, Wang Y-S, Bao R (2019) Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures. J Sound Vib 459:114848. https://doi.org/10.1016/j.jsv.2019.114848

    Article  Google Scholar 

  62. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of and μ. Soviet Phys Uspekhi 10(4):509

    Article  Google Scholar 

  63. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  Google Scholar 

  64. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489. https://doi.org/10.1103/PhysRevLett.58.2486

    Article  Google Scholar 

  65. Scherer A, Painter O, Vuckovic J, Loncar M, Yoshie T (2002) Photonic crystals for confining, guiding, and emitting light. IEEE Trans Nanotechnol 1(1):4–11. https://doi.org/10.1109/TNANO.2002.1005421

    Article  Google Scholar 

  66. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149. https://doi.org/10.1038/386143a0

    Article  Google Scholar 

  67. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76(25):4773–4776. https://doi.org/10.1103/PhysRevLett.76.4773

    Article  Google Scholar 

  68. Pendry JB, Holden AJ, Robbins DJ, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  69. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and Negative Refractive Index. Science 305(5685):788–792. https://doi.org/10.1126/science.1096796

    Article  Google Scholar 

  70. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294. https://doi.org/10.1126/science.1202691

    Article  Google Scholar 

  71. Moitra P, Slovick BA, Li W, Kravchencko II, Briggs DP, Krishnamurthy S, Valentine J (2015) Large-scale all-dielectric metamaterial perfect reflectors. ACS Photonics 2(6):692–698

    Article  Google Scholar 

  72. Akahane Y, Asano T, Song B-S, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961):944–947. https://doi.org/10.1038/nature02063

    Article  Google Scholar 

  73. Luo C, Johnson SG, Joannopoulos JD, Pendry JB (2002) All-angle negative refraction without negative effective index. Phys Rev B 65(20):201104. https://doi.org/10.1103/PhysRevB.65.201104

    Article  Google Scholar 

  74. Parimi PV, Lu WT, Vodo P, Sridhar S (2003) Imaging by flat lens using negative refraction. Nature 426(6965):404–404. https://doi.org/10.1038/426404a

    Article  Google Scholar 

  75. Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312(5775):892–894. https://doi.org/10.1126/science.1126021

    Article  Google Scholar 

  76. Alu A, Silveirinha MG, Salandrino A, Engheta N (2007) Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B 75(15):155410. https://doi.org/10.1103/PhysRevB.75.155410

    Article  Google Scholar 

  77. Xu Z, Shi J, Davis RJ, Yin X, Sievenpiper DF (2019) Rainbow trapping with long oscillation lifetimes in gradient magnetoinductive metasurfaces. Phys Rev Appl 12(2):024043. https://doi.org/10.1103/PhysRevApplied.12.024043

    Article  Google Scholar 

  78. Staliunas K, Sánchez-Morcillo VJ (2009) Spatial filtering of light by chirped photonic crystals. Phys Rev A 79(5):053807. https://doi.org/10.1103/PhysRevA.79.053807

    Article  Google Scholar 

  79. Leonhardt U, Philbin TG (2009) Chapter 2 Transformation optics and the geometry of light. In: Wolf E (ed) Progress in optics, vol 53. Elsevier, pp 69–152. https://doi.org/10.1016/S0079-6638(08)00202-3

    Chapter  Google Scholar 

  80. Brosi J-M, Koos C, Andreani LC, Waldow M, Leuthold J, Freude W (2008) High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express 16(6):4177–4191. https://doi.org/10.1364/OE.16.004177

    Article  Google Scholar 

  81. Gao Y, Shiue R-J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J (2015) High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett 15(3):2001–2005

    Article  Google Scholar 

  82. Poon JKS, Scheuer J, Xu Y, Yariv A (2004) Designing coupled-resonator optical waveguide delay lines. J Opt Soc Am B 21(9):1665–1673. https://doi.org/10.1364/JOSAB.21.001665

    Article  Google Scholar 

  83. Khanikaev AB, Mousavi SH, Tse WK, Kargarian M, MacDonald AH, Shvets G (2013) Photonic topological insulators. Nat Mater 12(3):233–239. https://doi.org/10.1038/nmat3520

    Article  Google Scholar 

  84. Fasihi K (2014) High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J Lightwave Technol 32(18):3126–3131. https://doi.org/10.1109/JLT.2014.2334613

    Article  Google Scholar 

  85. Cui K, Zhao Q, Feng X, Huang Y, Li Y, Wang D, Zhang W (2012) Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl Phys Lett 100(20):201102. https://doi.org/10.1063/1.4718353

    Article  Google Scholar 

  86. Zeng H, Zhao Y, Zong B, Bai J, An J (2020) Research on high-gain antenna unit based on left-handed materials. Recent trends in intelligent computing, communication and devices. Springer, pp 839–843

    Chapter  Google Scholar 

  87. Baena JD, Escobar AC, Sayanskiy A, Glybovski SB (2019) Left-handed metamaterials matched to free space through mechanical tuning. In: 2019 Thirteenth international congress on artificial materials for novel wave phenomena (Metamaterials), 16–21 Sept. 2019, pp X-044–X-046. https://doi.org/10.1109/MetaMaterials.2019.8900935

  88. Kim H, Hopwood J (2019) Wave propagation in composites of plasma and metamaterials with negative permittivity and permeability. Sci Rep 9(1):3024. https://doi.org/10.1038/s41598-019-39923-7

    Article  Google Scholar 

  89. Smith DR, Kolinko P, Schurig D (2004) Negative refraction in indefinite media. J Opt Soc Am B 21(5):1032–1043. https://doi.org/10.1364/JOSAB.21.001032

    Article  Google Scholar 

  90. Sukhovich A, Jing L, Page JH (2008) Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys Rev B 77(1):14301. https://doi.org/10.1103/PhysRevB.77.014301

    Article  Google Scholar 

  91. Zhang XD, Liu ZY (2004) Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl Phys Lett 85(2):341–343. https://doi.org/10.1063/1.1772854

    Article  Google Scholar 

  92. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5(9):523–530. https://doi.org/10.1038/nphoton.2011.154

    Article  Google Scholar 

  93. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48. https://doi.org/10.1038/nphoton.2006.49

    Article  MathSciNet  Google Scholar 

  94. Cheianov VV, Fal’ko V, Altshuler BL (2007) The focusing of electron flow and a veselago lens in graphene pn junctions. Science 315(5816):1252–1255. https://doi.org/10.1126/science.1138020

    Article  Google Scholar 

  95. Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier

    MATH  Google Scholar 

  96. Hou-Tong C, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597

    Article  Google Scholar 

  97. Berman PR (2002) Goos-Hänchen shift in negatively refractive media. Phys Rev E 66(6):067603. https://doi.org/10.1103/PhysRevE.66.067603

    Article  Google Scholar 

  98. Chen H, Chan CT (2010) Acoustic cloaking and transformation acoustics. J Phys D Appl Phys 43(11):113001. https://doi.org/10.1088/0022-3727/43/11/113001

    Article  Google Scholar 

  99. Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7(6):435–441. https://doi.org/10.1038/nmat2141

    Article  Google Scholar 

  100. Urzhumov YA, Smith DR (2010) Transformation Optics with Photonic Band Gap Media. Phys Rev Lett 105(16):163901. https://doi.org/10.1103/PhysRevLett.105.163901

    Article  Google Scholar 

  101. Lai Y, Ng J, Chen H, Han D, Xiao J, Zhang Z-Q, Chan CT (2009) Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 102(25):253902. https://doi.org/10.1103/PhysRevLett.102.253902

    Article  Google Scholar 

  102. Liu Y, Guo S, He S (2019) Illusion optics: disguising with ordinary dielectric materials. Adv Mater 31(6):1805106. https://doi.org/10.1002/adma.201805106

    Article  Google Scholar 

  103. Genov DA, Zhang S, Zhang X (2009) Mimicking celestial mechanics in metamaterials. Nat Phys 5(9):687–692. https://doi.org/10.1038/nphys1338

    Article  Google Scholar 

  104. Luo X, Yang T, Gu Y, Chen H, Ma H (2009) Conceal an entrance by means of superscatterer. Appl Phys Lett 94(22):223513. https://doi.org/10.1063/1.3149694

    Article  Google Scholar 

  105. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G (2007) Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys Rev Lett 99(18):183901. https://doi.org/10.1103/PhysRevLett.99.183901

    Article  Google Scholar 

  106. Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32(23):3432–3434

    Article  Google Scholar 

  107. Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100(6):063903. https://doi.org/10.1103/PhysRevLett.100.063903

    Article  Google Scholar 

  108. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct Fundam Appl 6(1):87–95. https://doi.org/10.1016/j.photonics.2007.07.013

    Article  Google Scholar 

  109. Chen H, Hou B, Chen S, Ao X, Wen W, Chan CT (2009) Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys Rev Lett 102(18):183903. https://doi.org/10.1103/PhysRevLett.102.183903

    Article  Google Scholar 

  110. Mei ZL, Cui TJ (2009) Experimental realization of a broadband bend structure using gradient index metamaterials. Opt Express 17(20):18354–18363

    Article  Google Scholar 

  111. Kwon D-H, Werner DH (2009) Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. Opt Express 17(10):7807–7817

    Article  Google Scholar 

  112. Ma YG, Ong CK, Tyc T, Leonhardt U (2009) An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nat Mater 8(8):639–642. https://doi.org/10.1038/nmat2489

    Article  Google Scholar 

  113. Zhai T, Zhou Y, Zhou J, Liu D (2009) Polarization controller based on embedded optical transformation. Opt Express 17(20):17206–17213

    Article  Google Scholar 

  114. Xie Y, Fu Y, Jia Z, Li J, Shen C, Xu Y, Chen H, Cummer SA (2018) Acoustic Imaging with metamaterial luneburg lenses. Sci Rep 8(1):16188. https://doi.org/10.1038/s41598-018-34581-7

    Article  Google Scholar 

  115. Fuentes-Domínguez R, Yao M, Colombi A, Dryburgh P, Pieris D, Jackson-Crisp A, Colquitt D, Clare A, Smith RJ, Clark M (2021) Design of a resonant Luneburg lens for surface acoustic waves. Ultrasonics 111:106306. https://doi.org/10.1016/j.ultras.2020.106306

    Article  Google Scholar 

  116. Chaplain GJ, De Ponti JM, Colombi A, Fuentes-Dominguez R, Dryburg P, Pieris D, Smith RJ, Clare A, Clark M, Craster RV (2020) Tailored elastic surface to body wave Umklapp conversion. Nat Commun 11(1):3267. https://doi.org/10.1038/s41467-020-17021-x

    Article  Google Scholar 

  117. Liberal I, Engheta N (2017) Near-zero refractive index photonics. Nat Photonics 11(3):149–158. https://doi.org/10.1038/nphoton.2017.13

    Article  MATH  Google Scholar 

  118. Liberal I, Mahmoud AM, Li Y, Edwards B, Engheta N (2017) Photonic doping of epsilon-near-zero media. Science 355(6329):1058–1062. https://doi.org/10.1126/science.aal2672

    Article  Google Scholar 

  119. Felsen L (1964) Focusing by an anisotropic plasma interface. IEEE Trans Antennas Propag 12(5):624–635. https://doi.org/10.1109/TAP.1964.1138275

    Article  Google Scholar 

  120. Felsen LB, Marcuvitz N (1994) Radiation and scattering of waves, vol 31. Wiley

    Book  Google Scholar 

  121. Cortes CL, Newman W, Molesky S, Jacob Z (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001. https://doi.org/10.1088/2040-8978/14/6/063001

    Article  Google Scholar 

  122. Yin X, Zhu H, Guo H, Deng M, Xu T, Gong Z, Li X, Hang ZH, Wu C, Li H, Chen S, Zhou L, Chen L (2019) Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev 13(1):1800081. https://doi.org/10.1002/lpor.201800081

    Article  Google Scholar 

  123. Biehs SA, Tschikin M, Ben-Abdallah P (2012) Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys Rev Lett 109(10):104301. https://doi.org/10.1103/PhysRevLett.109.104301

    Article  Google Scholar 

  124. Li J, Fok L, Yin X, Bartal G, Zhang X (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8(12):931–934. https://doi.org/10.1038/nmat2561

    Article  Google Scholar 

  125. Shen C, Xie Y, Sui N, Wang W, Cummer SA, Jing Y (2015) Broadband acoustic hyperbolic metamaterial. Phys Rev Lett 115(25):254301. https://doi.org/10.1103/PhysRevLett.115.254301

    Article  Google Scholar 

  126. Smolyaninov II, Narimanov EE (2010) Metric signature transitions in optical metamaterials. Phys Rev Lett 105(6):067402. https://doi.org/10.1103/PhysRevLett.105.067402

    Article  Google Scholar 

  127. Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband Purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100(18):181105. https://doi.org/10.1063/1.4710548

    Article  Google Scholar 

  128. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686–1686. https://doi.org/10.1126/science.1137368

    Article  Google Scholar 

  129. Tao C-W, Yen T-J, Huang T-Y (2020) Achieving sub-wavelength imaging through a flat hyperlens in a modified anodic aluminum oxide template. Sci Rep 10(1):5296. https://doi.org/10.1038/s41598-020-62243-0

    Article  Google Scholar 

  130. Ishii S, Kildishev AV, Narimanov E, Shalaev VM, Drachev VP (2013) Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev 7(2):265–271. https://doi.org/10.1002/lpor.201200095

    Article  Google Scholar 

  131. Kannegulla A, Cheng L-J (2016) Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials. Opt Lett 41(15):3539–3542

    Article  Google Scholar 

  132. Yang X, Yao J, Rho J, Yin X, Zhang X (2012) Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photonics 6(7):450–454. https://doi.org/10.1038/nphoton.2012.124

    Article  Google Scholar 

  133. Yao J, Yang X, Yin X, Bartal G, Zhang X (2011) Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc Natl Acad Sci 108(28):11327–11331. https://doi.org/10.1073/pnas.1104418108

    Article  Google Scholar 

  134. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14(18):8247–8256. https://doi.org/10.1364/OE.14.008247

    Article  Google Scholar 

  135. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871. https://doi.org/10.1038/nmat2546

    Article  Google Scholar 

  136. Jacob Z, Shalaev VM (2011) Plasmonics goes quantum. Science 334(6055):463–464. https://doi.org/10.1126/science.1211736

    Article  Google Scholar 

  137. Smith DR, Schurig D, Mock JJ, Kolinko P, Rye P (2004) Partial focusing of radiation by a slab of indefinite media. Appl Phys Lett 84(13):2244–2246. https://doi.org/10.1063/1.1690471

    Article  Google Scholar 

  138. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291. https://doi.org/10.1126/science.1198258

    Article  Google Scholar 

  139. Andryieuski A, Lavrinenko AV, Chigrin DN (2012) Graphene hyperlens for terahertz radiation. Phys Rev B 86(12):121108. https://doi.org/10.1103/PhysRevB.86.121108

    Article  Google Scholar 

  140. Sun J, Shalaev MI, Litchinitser NM (2015) Experimental demonstration of a non-resonant hyperlens in the visible spectral range. Nat Commun 6(1):7201. https://doi.org/10.1038/ncomms8201

    Article  Google Scholar 

  141. Potemkin AS, Poddubny AN, Belov PA, Kivshar YS (2012) Green function for hyperbolic media. Phys Rev A 86(2):023848. https://doi.org/10.1103/PhysRevA.86.023848

    Article  Google Scholar 

  142. Poddubny AN, Belov PA, Ginzburg P, Zayats AV, Kivshar YS (2012) Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys Rev B 86(3):035148. https://doi.org/10.1103/PhysRevB.86.035148

    Article  Google Scholar 

  143. Chshelokova AV, Kapitanova PV, Poddubny AN, Filonov DS, Slobozhanyuk AP, Kivshar YS, Belov PA (2012) Hyperbolic transmission-line metamaterials. J Appl Phys 112(7):073116. https://doi.org/10.1063/1.4758287

    Article  Google Scholar 

  144. Siddiqui OF, Eleftheriades GV (2011) Study of resonance-cone propagation in truncated hyperbolic metamaterial grids using transmission-line matrix simulations. J Franklin Inst 348(7):1285–1297. https://doi.org/10.1016/j.jfranklin.2010.02.005

    Article  MATH  Google Scholar 

  145. Kiarashinejad Y, Abdollahramezani S, Adibi A (2020) Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Comput Mater 6(1):12. https://doi.org/10.1038/s41524-020-0276-y

    Article  Google Scholar 

  146. Tahersima MH, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K (2018) Deep neural network inverse design of integrated nanophotonic devices. arXiv preprint arXiv, 180903555

  147. Ma W, Cheng F, Liu Y (2018) Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12(6):6326–6334. https://doi.org/10.1021/acsnano.8b03569

    Article  Google Scholar 

  148. Ma W, Liu Z, Kudyshev ZA, Boltasseva A, Cai W, Liu Y (2021) Deep learning for the design of photonic structures. Nat Photonics 15(2):77–90. https://doi.org/10.1038/s41566-020-0685-y

    Article  Google Scholar 

  149. Tahersima MH, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K (2019) Deep neural network inverse design of integrated photonic power splitters. Sci Rep 9(1):1368. https://doi.org/10.1038/s41598-018-37952-2

    Article  Google Scholar 

  150. Hao J, Zheng L, Yang D, Guo Y (2019) Inverse Design of Photonic Crystal Nanobeam Cavity Structure via Deep Neural Network. In: Asia communications and photonics conference (ACPC) 2019, Chengdu, 2019/11/02 2019. OSA Technical Digest. Optical Society of America, p M4A.296

  151. Liu D, Tan Y, Khoram E, Yu Z (2018) Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5(4):1365–1369. https://doi.org/10.1021/acsphotonics.7b01377

    Article  Google Scholar 

  152. Ma W, Cheng F, Xu Y, Wen Q, Liu Y (2019) Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv Mater 31(35):1901111. https://doi.org/10.1002/adma.201901111

    Article  Google Scholar 

  153. Brillouin L (2003) Wave propagation in periodic structures: electric filters and crystal lattices. Courier Corporation

    MATH  Google Scholar 

  154. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025. https://doi.org/10.1103/PhysRevLett.71.2022

    Article  Google Scholar 

  155. Kushwaha MS, Halevi P, Martinez G, Dobrzynski L, Djafari-Rouhani B (1994) Theory of acoustic band structure of periodic elastic composites. Phys Rev B Condens Matter 49(4):2313–2322. https://doi.org/10.1103/physrevb.49.2313

    Article  Google Scholar 

  156. Sigalas MM, Economou EN (1994) Elastic-waves in plates with periodically placed inclusions. J Appl Phys 75(6):2845–2850. https://doi.org/10.1063/1.356177

    Article  Google Scholar 

  157. Vasseur JO, Djafarirouhani B, Dobrzynski L, Kushwaha MS, Halevi P (1994) Complete acoustic band-gaps in periodic fiber-reinforced composite-materials—the carbon-epoxy composite and some metallic systems. J Phys-Condens Mat 6(42):8759–8770. https://doi.org/10.1088/0953-8984/6/42/008

    Article  Google Scholar 

  158. Tanaka Y, Tamura S (1998) Surface acoustic waves in two-dimensional periodic elastic structures. Phys Rev B 58(12):7958–7965. https://doi.org/10.1103/PhysRevB.58.7958

    Article  Google Scholar 

  159. Croënne C, Lee EJS, Hu H, Page JH (2011) Band gaps in phononic crystals: generation mechanisms and interaction effects. AIP Adv 1(4):041401. https://doi.org/10.1063/1.3675797

    Article  Google Scholar 

  160. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736. https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  161. Tanaka Y, Tomoyasu Y, Tamura S (2000) Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys Rev B 62(11):7387–7392. https://doi.org/10.1103/PhysRevB.62.7387

    Article  Google Scholar 

  162. Rupin M, Lemoult F, Lerosey G, Roux P (2014) Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Phys Rev Lett 112(23):234301. https://doi.org/10.1103/PhysRevLett.112.234301

    Article  Google Scholar 

  163. Williams EG, Roux P, Rupin M, Kuperman WA (2015) Theory of multiresonant metamaterials forA0Lamb waves. Phys Rev B 91(10):1–12. https://doi.org/10.1103/PhysRevB.91.104307

    Article  Google Scholar 

  164. Celli P, Yousefzadeh B, Daraio C, Gonella S (2019) Bandgap widening by disorder in rainbow metamaterials. Appl Phys Lett 114(9):091903. https://doi.org/10.1063/1.5081916

    Article  Google Scholar 

  165. Liu L, Hussein MI (2012) Wave motion in periodic flexural beams and characterization of the transition between bragg scattering and local resonance. J Appl Mech-T Asme 79(1):011003. https://doi.org/10.1115/1.4004592

    Article  Google Scholar 

  166. Krushynska AO, Miniaci M, Bosia F, Pugno NM (2017) Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extreme Mech Lett 12:30–36. https://doi.org/10.1016/j.eml.2016.10.004

    Article  Google Scholar 

  167. Chuang K-C, Lv X-F, Wang Y-H (2019) A bandgap switchable elastic metamaterial using shape memory alloys. J Appl Phys 125(5):055101. https://doi.org/10.1063/1.5065557

    Article  Google Scholar 

  168. Naify CJ, Chang C-M, McKnight G, Nutt SR (2012) Scaling of membrane-type locally resonant acoustic metamaterial arrays. J Acoust Soc Am 132(4):2784–2792. https://doi.org/10.1121/1.4744941

    Article  Google Scholar 

  169. Barnhart MV, Xu XC, Chen YY, Zhang S, Song JZ, Huang GL (2019) Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. J Sound Vib 438:1–12. https://doi.org/10.1016/j.jsv.2018.08.035

    Article  Google Scholar 

  170. Chen YY, Barnhart MV, Chen JK, Hu GK, Sun CT, Huang GL (2016) Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos Struct 136:358–371. https://doi.org/10.1016/j.compstruct.2015.09.048

    Article  Google Scholar 

  171. Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal FJ (2010) A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7:52. https://doi.org/10.1038/nphys1804

    Article  Google Scholar 

  172. Zhang Z, Cheng Y, Liu X, Christensen J (2019) Subwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterials. Phys Rev B 99(22):224104. https://doi.org/10.1103/PhysRevB.99.224104

    Article  Google Scholar 

  173. Zhang Z, Gu Y, Long H, Cheng Y, Liu X, Christensen J (2019) Subwavelength acoustic valley-hall topological insulators using soda cans honeycomb lattices. Research 2019:8. https://doi.org/10.34133/2019/5385763

    Article  Google Scholar 

  174. Cheng ZB, Shi ZF (2018) Composite periodic foundation and its application for seismic isolation. Earthq Eng Struct Dyn 47(4):925–944. https://doi.org/10.1002/eqe.2999

    Article  Google Scholar 

  175. Casablanca O, Ventura G, Garesci F, Azzerboni B, Chiaia B, Chiappini M, Finocchio G (2018) Seismic isolation of buildings using composite foundations based on metamaterials. J Appl Phys. https://doi.org/10.1063/1.5018005

    Article  Google Scholar 

  176. Muhammad, Lim CW (2019) Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps. Phys Lett A 383(23):2789–2796. https://doi.org/10.1016/j.physleta.2019.05.039

    Article  Google Scholar 

  177. Muhammad, Lim CW, Reddy JN (2019) Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium. Eng Struct 188:440–451. https://doi.org/10.1016/j.engstruct.2019.03.046

    Article  Google Scholar 

  178. Xiao Y, Wen J, Wen X (2012) Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/45/19/195401

    Article  Google Scholar 

  179. Li F-L, Wang Y-S, Zhang C, Yu G-L (2013) Bandgap calculations of two-dimensional solid–fluid phononic crystals with the boundary element method. Wave Motion 50(3):525–541. https://doi.org/10.1016/j.wavemoti.2012.12.001

    Article  MathSciNet  MATH  Google Scholar 

  180. Khelif A, Achaoui Y, Benchabane S, Laude V, Aoubiza B (2010) Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys Rev B 81(21):1–7. https://doi.org/10.1103/PhysRevB.81.214303

    Article  Google Scholar 

  181. Graczykowski B, Alzina F, Gomis-Bresco J, Torres CMS (2016) Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals. J Appl Phys 119(2):025308. https://doi.org/10.1063/1.4939825

    Article  Google Scholar 

  182. Yan ZZ, Wang YS (2006) Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys Rev B 74(22):224303. https://doi.org/10.1103/PhysRevB.74.224303

    Article  Google Scholar 

  183. Muhammad, Lim CW (2020) Analytical modeling and computational analysis on topological properties of 1-D phononic crystals in elastic media. J Mech Mater Struct 15(1):15–35. https://doi.org/10.2140/jomms.2020.15.15

    Article  MathSciNet  Google Scholar 

  184. Muhammad, Zhou WJ, Lim CW (2019) Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. Int J Mech Sci 159:359–372. https://doi.org/10.1016/j.ijmecsci.2019.05.020

    Article  Google Scholar 

  185. Huang HH, Sun CT (2009) Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J Phys. https://doi.org/10.1088/1367-2630/11/1/013003

    Article  Google Scholar 

  186. Peiró-Torres MP, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez JV (2019) Interferences in locally resonant sonic metamaterials formed from Helmholtz resonators. Appl Phys Lett 114(17):171901. https://doi.org/10.1063/1.5092375

    Article  Google Scholar 

  187. Xu J, Zhang X, Yan R (2020) Coupled piezoelectric phononic crystal for adaptive broadband wave attenuation by destructive interference. J Appl Mech. https://doi.org/10.1115/1.4047205

    Article  Google Scholar 

  188. Chen Y, Hu G, Huang G (2017) A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. J Mech Phys Solids 105:179–198. https://doi.org/10.1016/j.jmps.2017.05.009

    Article  MathSciNet  Google Scholar 

  189. Huang TY, Shen C, Jing Y (2016) Membrane- and plate-type acoustic metamaterials. J Acoust Soc Am 139(6):3240. https://doi.org/10.1121/1.4950751

    Article  Google Scholar 

  190. Zhou XL, Wang LQ (2018) Opening complete band gaps in two dimensional locally resonant phononic crystals. J Phys Chem Solids 116:174–179. https://doi.org/10.1016/j.jpcs.2018.01.025

    Article  Google Scholar 

  191. Bilal OR, Hussein MI (2013) Trampoline metamaterial: local resonance enhancement by springboards. Appl Phys Lett 103(11):111901. https://doi.org/10.1063/1.4820796

    Article  Google Scholar 

  192. Oudich M, Djafari-Rouhani B, Bonello B, Pennec Y, Hemaidia S, Sarry F, Beyssen D (2018) Rayleigh waves in phononic crystal made of multilayered pillars: confined modes, fano resonances, and acoustically induced transparency. Phys Rev Appl 9(3):034013. https://doi.org/10.1103/PhysRevApplied.9.034013

    Article  Google Scholar 

  193. Muhammad, Lim CW (2020) Dissipative multiresonant pillared and trampoline metamaterials with amplified local resonance bandgaps and broadband vibration attenuation. J Vib Acoust 142(6):061012. https://doi.org/10.1115/1.4047358

    Article  Google Scholar 

  194. Yu X, Zhou J, Liang H, Jiang Z, Wu L (2018) Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 94:114–173. https://doi.org/10.1016/j.pmatsci.2017.12.003

    Article  Google Scholar 

  195. Tong S, Ren C, Tang W (2019) High-transmission negative refraction in the gradient space-coiling metamaterials. Appl Phys Lett 114(20):204101. https://doi.org/10.1063/1.5100550

    Article  Google Scholar 

  196. Hussein MI (2009) Reduced Bloch mode expansion for periodic media band structure calculations. Proc R Soc A Math Phys 465(2109):2825–2848. https://doi.org/10.1098/rspa.2008.0471

    Article  MathSciNet  MATH  Google Scholar 

  197. Hussein MI (2009) Theory of damped Bloch waves in elastic media. Phys Rev B 80(21):1–4. https://doi.org/10.1103/PhysRevB.80.212301

    Article  Google Scholar 

  198. Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys. https://doi.org/10.1063/1.3498806

    Article  Google Scholar 

  199. Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767–4774. https://doi.org/10.1016/j.jsv.2013.04.041

    Article  Google Scholar 

  200. Lepidi M, Bacigalupo A (2019) Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn 98(4):2711–2735. https://doi.org/10.1007/s11071-019-05032-3

    Article  MATH  Google Scholar 

  201. DePauw D, Al Ba’ba’a H, Nouh M (2018) Metadamping and energy dissipation enhancement via hybrid phononic resonators. Extreme Mech Lett 18:36–44. https://doi.org/10.1016/j.eml.2017.11.002

    Article  Google Scholar 

  202. Bilal OR, Foehr A, Daraio C (2017) Observation of trampoline phenomena in 3D-printed metamaterial plates. Extreme Mech Lett 15:103–107. https://doi.org/10.1016/j.eml.2017.06.004

    Article  Google Scholar 

  203. Li Y, Chen T, Wang X, Xi Y, Liang Q (2015) Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial. Phys Lett A 379(5):412–416. https://doi.org/10.1016/j.physleta.2014.11.028

    Article  Google Scholar 

  204. Tian Y, Wu JH, Li H, Gu C, Yang Z, Zhao Z, Lu K (2019) Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators. J Phys D Appl Phys 52(39):395301. https://doi.org/10.1088/1361-6463/ab2dba

    Article  Google Scholar 

  205. Meng H, Chronopoulos D, Fabro AT, Elmadih W, Maskery I (2020) Rainbow metamaterials for broadband multi-frequency vibration attenuation: numerical analysis and experimental validation. J Sound Vib 465:115005. https://doi.org/10.1016/j.jsv.2019.115005

    Article  Google Scholar 

  206. Zhou WJ, Muhammad, Chen WQ, Chen ZY, Lim CW (2019) Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches. Eur J Mech A Solid 77:103807. https://doi.org/10.1016/j.euromechsol.2019.103807

    Article  MathSciNet  MATH  Google Scholar 

  207. Chen Y, Huang G, Sun C (2014) Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J Vib Acoust 136(6):061008

    Article  Google Scholar 

  208. D’Alessandro L, Ardito R, Braghin F, Corigliano A (2019) Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci Rep 9(1):8039. https://doi.org/10.1038/s41598-019-44507-6

    Article  Google Scholar 

  209. D’Alessandro L, Belloni E, Ardito R, Braghin F, Corigliano A (2017) Mechanical low-frequency filter via modes separation in 3D periodic structures. Appl Phys Lett 111(23):231902. https://doi.org/10.1063/1.4995554

    Article  Google Scholar 

  210. Muhammad, Lim CW (2021) Ultrawide bandgap by 3D monolithic mechanical metastructure for vibration and noise control. Arch Civ Mech Eng Accept. https://doi.org/10.1007/s43452-021-00201-x

    Article  Google Scholar 

  211. Yilmaz C, Hulbert GM, Kikuchi N (2007) Phononic band gaps induced by inertial amplification in periodic media. Phys Rev B. https://doi.org/10.1103/PhysRevB.76.054309

    Article  Google Scholar 

  212. Acar G, Yilmaz C (2013) Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures. J Sound Vib 332(24):6389–6404. https://doi.org/10.1016/j.jsv.2013.06.022

    Article  Google Scholar 

  213. Orta AH, Yilmaz C (2019) Inertial amplification induced phononic band gaps generated by a compliant axial to rotary motion conversion mechanism. J Sound Vib 439:329–343. https://doi.org/10.1016/j.jsv.2018.10.014

    Article  Google Scholar 

  214. Yuksel O, Yilmaz C (2015) Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms. J Sound Vib 355:232–245. https://doi.org/10.1016/j.jsv.2015.06.016

    Article  Google Scholar 

  215. Frandsen NMM, Bilal OR, Jensen JS, Hussein MI (2016) Inertial amplification of continuous structures: large band gaps from small masses. J Appl Phys 119(12):124902. https://doi.org/10.1063/1.4944429

    Article  Google Scholar 

  216. Li J, Yang P, Li S (2020) Phononic band gaps by inertial amplification mechanisms in periodic composite sandwich beam with lattice truss cores. Compos Struct 231:111458. https://doi.org/10.1016/j.compstruct.2019.111458

    Article  Google Scholar 

  217. Zeighami F, Palermo A, Marzani A (2019) Inertial amplified resonators for tunable metasurfaces. Meccanica 54(13):2053–2065. https://doi.org/10.1007/s11012-019-01020-4

    Article  MathSciNet  Google Scholar 

  218. Muhammad S, Wang S, Li F, Zhang C (2020) Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms. J Vib Control 26(15–16):1309–1318. https://doi.org/10.1177/1077546319895630

    Article  MathSciNet  Google Scholar 

  219. Cheng Z, Palermo A, Shi Z, Marzani A (2020) Enhanced tuned mass damper using an inertial amplification mechanism. J Sound Vib 475:115267. https://doi.org/10.1016/j.jsv.2020.115267

    Article  Google Scholar 

  220. Sui N, Yan X, Huang T-Y, Xu J, Yuan F-G, Jing Y (2015) A lightweight yet sound-proof honeycomb acoustic metamaterial. Appl Phys Lett 106(17):171905. https://doi.org/10.1063/1.4919235

    Article  Google Scholar 

  221. Xu X, Li P, Zhou X, Hu G (2015) Experimental study on acoustic subwavelength imaging based on zero-mass metamaterials. EPL Europhys Lett 109(2):28001. https://doi.org/10.1209/0295-5075/109/28001

    Article  Google Scholar 

  222. Li P, Chen X, Zhou X, Hu G, Xiang P (2015) Acoustic cloak constructed with thin-plate metamaterials. Int J Smart Nano Mat 6(1):73–83. https://doi.org/10.1080/19475411.2015.1005722

    Article  Google Scholar 

  223. Fleury R, Alù A (2013) Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys Rev Lett 111(5):055501. https://doi.org/10.1103/PhysRevLett.111.055501

    Article  Google Scholar 

  224. Jing Y, Xu J, Fang NX (2012) Numerical study of a near-zero-index acoustic metamaterial. Phys Lett A 376(45):2834–2837. https://doi.org/10.1016/j.physleta.2012.08.057

    Article  Google Scholar 

  225. Assouar MB, Senesi M, Oudich M, Ruzzene M, Hou Z (2012) Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Appl Phys Lett 101(17):173505. https://doi.org/10.1063/1.4764072

    Article  Google Scholar 

  226. Assouar MB, Oudich M (2012) Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates. Appl Phys Lett 100(12):123506. https://doi.org/10.1063/1.3696050

    Article  Google Scholar 

  227. Oudich M, Djafari-Rouhani B, Pennec Y, Assouar MB, Bonello B (2014) Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. J Appl Phys 116(18):184504. https://doi.org/10.1063/1.4901462

    Article  Google Scholar 

  228. Muhammad, Lim CW, Leung AYT (2021) Plane and surface acoustic waves manipulation by three-dimensional composite phononic pillars with 3D bandgap and defect analysis. Acoustics 3(1):25–41. https://doi.org/10.3390/acoustics3010004

    Article  Google Scholar 

  229. Wang Y-F, Zhang S-Y, Wang Y-S, Laude V (2020) Hybridization of resonant modes and Bloch waves in acoustoelastic phononic crystals. Phys Rev B 102(14):144303. https://doi.org/10.1103/PhysRevB.102.144303

    Article  Google Scholar 

  230. Shen C, Xu J, Fang NX, Jing Y (2014) Anisotropic complementary acoustic metamaterial for canceling out aberrating Layers. Phys Rev X 4(4):041033. https://doi.org/10.1103/PhysRevX.4.041033

    Article  Google Scholar 

  231. Jiang P, Wang X-P, Chen T-N, Zhu J (2015) Band gap and defect state engineering in a multi-stub phononic crystal plate. J Appl Phys 117(15):154301. https://doi.org/10.1063/1.4917565

    Article  Google Scholar 

  232. Yang Z, Mei J, Yang M, Chan NH, Sheng P (2008) Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett 101(20):204301. https://doi.org/10.1103/PhysRevLett.101.204301

    Article  Google Scholar 

  233. Chen Y, Huang G, Zhou X, Hu G, Sun C-T (2014) Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J Acoust Soc Am 136(3):969–979. https://doi.org/10.1121/1.4892870

    Article  Google Scholar 

  234. Langfeldt F, Gleine W, von Estorff O (2015) Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J Sound Vib 349:315–329. https://doi.org/10.1016/j.jsv.2015.03.037

    Article  Google Scholar 

  235. Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P (2012) Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun 3(1):756. https://doi.org/10.1038/ncomms1758

    Article  Google Scholar 

  236. Yang M, Meng C, Fu C, Li Y, Yang Z, Sheng P (2015) Subwavelength total acoustic absorption with degenerate resonators. Appl Phys Lett 107(10):104104. https://doi.org/10.1063/1.4930944

    Article  Google Scholar 

  237. Ang LYL, Koh YK, Lee HP (2017) Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control. Appl Phys Lett 111(4):041903. https://doi.org/10.1063/1.4995405

    Article  Google Scholar 

  238. Malléjac M, Merkel A, Sánchez-Dehesa J, Christensen J, Tournat V, Groby J-P, Romero-García V (2019) Zero-phase propagation in realistic plate-type acoustic metamaterials. Appl Phys Lett 115(13):134101. https://doi.org/10.1063/1.5121295

    Article  Google Scholar 

  239. Ma F, Wu JH, Huang M, Zhang W, Zhang S (2015) A purely flexible lightweight membrane-type acoustic metamaterial. J Phys D Appl Phys 48(17):175105. https://doi.org/10.1088/0022-3727/48/17/175105

    Article  Google Scholar 

  240. Zhou W, Wu B, Chen Z, Chen W, Lim CW, Reddy JN (2020) Actively controllable topological phase transition in homogeneous piezoelectric rod system. J Mech Phys Solids 137:103824. https://doi.org/10.1016/j.jmps.2019.103824

    Article  MathSciNet  Google Scholar 

  241. Bilal OR, Foehr A, Daraio C (2017) Reprogrammable phononic metasurfaces. Adv Mater 29(39):1700628. https://doi.org/10.1002/adma.201700628

    Article  Google Scholar 

  242. Chen X, Xu X, Ai S, Chen H, Pei Y, Zhou X (2014) Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields. Appl Phys Lett 105(7):071913. https://doi.org/10.1063/1.4893921

    Article  Google Scholar 

  243. Wang Y-Z, Li F-M, Wang Y-S (2016) Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int J Mech Sci 106:357–362. https://doi.org/10.1016/j.ijmecsci.2015.12.004

    Article  Google Scholar 

  244. Yang A, Li P, Wen Y, Lu C, Peng X, Zhang J, He W, Wang D, Yang C (2014) Significant tuning of band structures of magneto-mechanical phononic crystals using extraordinarily small magnetic fields. Appl Phys Lett 105(1):011904. https://doi.org/10.1063/1.4887378

    Article  Google Scholar 

  245. Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621–633. https://doi.org/10.1016/j.jmps.2008.11.002

    Article  MATH  Google Scholar 

  246. Wang G, Wang JW, Chen SB, Wen JH (2011) Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits. Smart Mater Struct 20(12):125019. https://doi.org/10.1088/0964-1726/20/12/125019

    Article  Google Scholar 

  247. Li FM, Lyu XX (2014) Active vibration control of lattice sandwich beams using the piezoelectric actuator/sensor pairs. Compos Part B Eng 67:571–578. https://doi.org/10.1016/j.compositesb.2014.08.016

    Article  Google Scholar 

  248. Zhang H, Wen JH, Xiao Y, Wang G, Wen XS (2015) Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J Sound Vib 343:104–120. https://doi.org/10.1016/j.jsv.2015.01.019

    Article  Google Scholar 

  249. Wang G, Chen S (2016) Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier–resonator feedback circuits. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/1/015004

    Article  Google Scholar 

  250. Yan DJ, Chen AL, Wang YS, Zhang CZ, Golub M (2018) In-plane elastic wave propagation in nanoscale periodic layered piezoelectric structures. Int J Mech Sci 142:276–288. https://doi.org/10.1016/j.ijmecsci.2018.04.054

    Article  Google Scholar 

  251. Forward RL (1979) Electronic damping of vibrations in optical structures. Appl Opt 18(5):690–697. https://doi.org/10.1364/AO.18.000690

    Article  Google Scholar 

  252. Hagood NW, Vonflotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146(2):243–268. https://doi.org/10.1016/0022-460x(91)90762-9

    Article  Google Scholar 

  253. Thorp O, Ruzzene M, Baz A (2001) Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater Struct 10(5):979–989. https://doi.org/10.1088/0964-1726/10/5/314

    Article  Google Scholar 

  254. Spadoni A, Ruzzene M, Cunefare K (2009) Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. J Intell Mater Syst Struct 20(8):979–990. https://doi.org/10.1177/1045389x08100041

    Article  Google Scholar 

  255. Airoldi L, Ruzzene M (2011) Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J Phys 13:113010. https://doi.org/10.1088/1367-2630/13/11/113010

    Article  Google Scholar 

  256. Casadei F, Beck BS, Cunefare KA, Ruzzene M (2012) Vibration control of plates through hybrid configurations of periodic piezoelectric shunts. J Intell Mater Syst Struct 23(10):1169–1177. https://doi.org/10.1177/1045389x12443014

    Article  Google Scholar 

  257. Casadei F, Ruzzene M, Dozio L, Cunefare KA (2010) Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Mater Struct 19(1):15002. https://doi.org/10.1088/0964-1726/19/1/015002

    Article  Google Scholar 

  258. Thorp O, Ruzzene M, Baz A (2001) Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater Struct 10:979

    Article  Google Scholar 

  259. Li FM, Zhang CZ, Liu CC (2017) Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs. J Sound Vib 393:14–29. https://doi.org/10.1016/j.jsv.2017.01.038

    Article  Google Scholar 

  260. Sugino C, Ruzzene M, Erturk A (2020) Digitally programmable resonant elastic metamaterials. Phys Rev Appl 13(6):061001. https://doi.org/10.1103/PhysRevApplied.13.061001

    Article  Google Scholar 

  261. Sugino C, Ruzzene M, Erturk A (2020) Nonreciprocal piezoelectric metamaterial framework and circuit strategies. Phys Rev B 102(1):014304. https://doi.org/10.1103/PhysRevB.102.014304

    Article  Google Scholar 

  262. Akl W, Baz A (2011) Stability analysis of active acoustic metamaterial with programmable bulk modulus. Smart Mater Struct 20(12):125010. https://doi.org/10.1088/0964-1726/20/12/125010

    Article  Google Scholar 

  263. Akl W, Baz A (2013) Active acoustic metamaterial with simultaneously programmable density and bulk modulus. J Vib Acoust. https://doi.org/10.1115/1.4023141

    Article  Google Scholar 

  264. Hu G, Austin AC, Sorokin V, Tang L (2021) Metamaterial beam with graded local resonators for broadband vibration suppression. Mech Syst Signal Process 146:106982. https://doi.org/10.1016/j.ymssp.2020.106982

    Article  Google Scholar 

  265. Rupin M, Lerosey G, de Rosny J, Lemoult F (2019) Mimicking the cochlea with an active acoustic metamaterial. New J Phys 21(9):093012. https://doi.org/10.1088/1367-2630/ab3d8f

    Article  Google Scholar 

  266. Cho C, Wen X, Park N, Li J (2020) Digitally virtualized atoms for acoustic metamaterials. Nat Commun 11(1):251. https://doi.org/10.1038/s41467-019-14124-y

    Article  Google Scholar 

  267. Gliozzi AS, Miniaci M, Chiappone A, Bergamini A, Morin B, Descrovi E (2020) Tunable photo-responsive elastic metamaterials. Nat Commun 11(1):2576. https://doi.org/10.1038/s41467-020-16272-y

    Article  Google Scholar 

  268. Baz A (2009) The structure of an active acoustic metamaterial with tunable effective density. New J Phys 11(12):123010. https://doi.org/10.1088/1367-2630/11/12/123010

    Article  Google Scholar 

  269. Baz AM (2010) An active acoustic metamaterial with tunable effective density. J Vib Acoust. https://doi.org/10.1115/1.4000983

    Article  Google Scholar 

  270. Akl W, Baz A (2012) Multicell active acoustic metamaterial with programmable effective densities. J Dyn Syst Meas Control. https://doi.org/10.1115/1.4006619

    Article  Google Scholar 

  271. Akl W, Baz A (2010) Multi-cell active acoustic metamaterial with programmable bulk modulus. J Intell Mater Syst Struct 21(5):541–556. https://doi.org/10.1177/1045389x09359434

    Article  Google Scholar 

  272. Akl W, Baz A (2012) Experimental characterization of active acoustic metamaterial cell with controllable dynamic density. J Appl Phys 112(8):084912. https://doi.org/10.1063/1.4759327

    Article  Google Scholar 

  273. Akl W, Baz A (2012) Analysis and experimental demonstration of an active acoustic metamaterial cell. J Appl Phys 111(4):044505. https://doi.org/10.1063/1.3686210

    Article  Google Scholar 

  274. Xiao S, Ma G, Li Y, Yang Z, Sheng P (2015) Active control of membrane-type acoustic metamaterial by electric field. Appl Phys Lett 106(9):091904. https://doi.org/10.1063/1.4913999

    Article  Google Scholar 

  275. Lissek H (2013) Electroacoustic metamaterials: achieving negative acoustic properties with shunt loudspeakers. Proc Meetings Acoust 19(1):030023. https://doi.org/10.1121/1.4799335

    Article  Google Scholar 

  276. Popa B-I, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5(1):3398. https://doi.org/10.1038/ncomms4398

    Article  Google Scholar 

  277. Ma G, Fan X, Sheng P, Fink M (2018) Shaping reverberating sound fields with an actively tunable metasurface. Proc Natl Acad Sci 115(26):6638–6643. https://doi.org/10.1073/pnas.1801175115

    Article  Google Scholar 

  278. Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D Soft metamaterials with negative Poisson’s ratio. Adv Mater 25(36):5044–5049. https://doi.org/10.1002/adma.201301986

    Article  Google Scholar 

  279. Brunet T, Leng J, Mondain-Monval O (2013) Soft acoustic metamaterials. Science 342(6156):323–324. https://doi.org/10.1126/science.1241727

    Article  Google Scholar 

  280. Wu B, Zhou W, Bao R, Chen W (2018) Tuning elastic waves in soft phononic crystal cylinders via large deformation and electromechanical coupling. J Appl Mech. https://doi.org/10.1115/1.4038770

    Article  Google Scholar 

  281. Wang L, Bertoldi K (2012) Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures. Int J Solids Struct 49(19):2881–2885. https://doi.org/10.1016/j.ijsolstr.2012.05.008

    Article  Google Scholar 

  282. Lu Z, Shrestha M, Lau G-K (2017) Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator. Appl Phys Lett 110(18):182901. https://doi.org/10.1063/1.4982634

    Article  Google Scholar 

  283. Jia K, Wang M, Lu T, Zhang J, Wang T (2016) Band-gap tunable dielectric elastomer filter for low frequency noise. Smart Mater Struct 25(5):055047

    Article  Google Scholar 

  284. Robillard J-F, Matar OB, Vasseur JO, Deymier PA, Stippinger M, Hladky-Hennion A-C, Pennec Y, Djafari-Rouhani B (2009) Tunable magnetoelastic phononic crystals. Appl Phys Lett 95(12):124104. https://doi.org/10.1063/1.3236537

    Article  Google Scholar 

  285. Vasseur JO, Matar OB, Robillard JF, Hladky-Hennion A-C, Deymier PA (2011) Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials. AIP Adv 1(4):041904. https://doi.org/10.1063/1.3676172

    Article  Google Scholar 

  286. Allein F, Tournat V, Gusev VE, Theocharis G (2016) Tunable magneto-granular phononic crystals. Appl Phys Lett 108(16):161903. https://doi.org/10.1063/1.4947192

    Article  Google Scholar 

  287. Bilal OR, Foehr A, Daraio C (2017) Reprogrammable phononic metasurfaces. Adv Mater. https://doi.org/10.1002/adma.201700628

    Article  Google Scholar 

  288. Celli P, Gonella S (2015) Tunable directivity in metamaterials with reconfigurable cell symmetry. Appl Phys Lett 106(9):091905. https://doi.org/10.1063/1.4914011

    Article  Google Scholar 

  289. Pierce CD, Willey CL, Chen VW, Hardin JO, Berrigan JD, Juhl AT, Matlack KH (2020) Adaptive elastic metastructures from magneto-active elastomers. Smart Mater Struct 29(6):065004. https://doi.org/10.1088/1361-665x/ab80e4

    Article  Google Scholar 

  290. Wang P, Casadei F, Shan S, Weaver JC, Bertoldi K (2014) Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys Rev Lett 113(1):014301. https://doi.org/10.1103/PhysRevLett.113.014301

    Article  Google Scholar 

  291. Wang Z, Zhang Q, Zhang K, Hu G (2016) Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv Mater 28(44):9857–9861. https://doi.org/10.1002/adma.201604009

    Article  Google Scholar 

  292. Caleap M, Drinkwater BW (2014) Acoustically trapped colloidal crystals that are reconfigurable in real time. Proc Natl Acad Sci 111(17):6226–6230

    Article  Google Scholar 

  293. Boechler N, Theocharis G, Daraio C (2011) Bifurcation-based acoustic switching and rectification. Nat Mater 10(9):665–668. https://doi.org/10.1038/nmat3072

    Article  Google Scholar 

  294. Matar OB, Vasseur J, Deymier PA (2013) Tunable phononic crystals and metamaterials. Acoustic metamaterials and phononic crystals. Springer, pp 253–280

    Chapter  Google Scholar 

  295. Bergamini A, Delpero T, Simoni LD, Lillo LD, Ruzzene M, Ermanni P (2014) Phononic crystal with adaptive connectivity. Adv Mater 26(9):1343–1347

    Article  Google Scholar 

  296. Bertoldi K, Boyce MC (2008) Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys Rev B 77(5):052105. https://doi.org/10.1103/PhysRevB.77.052105

    Article  Google Scholar 

  297. Bertoldi K, Boyce MC (2008) Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Phys Rev B 78(18):184107. https://doi.org/10.1103/PhysRevB.78.184107

    Article  Google Scholar 

  298. Babaee S, Pajovic S, Rafsanjani A, Shi Y, Bertoldi K, Traverso G (2020) Bioinspired kirigami metasurfaces as assistive shoe grips. Nat Biomed Eng. https://doi.org/10.1038/s41551-020-0564-3

    Article  Google Scholar 

  299. An N, Domel AG, Zhou J, Rafsanjani A, Bertoldi K (2020) Programmable Hierarchical Kirigami. Adv Func Mater 30(6):1906711. https://doi.org/10.1002/adfm.201906711

    Article  Google Scholar 

  300. Jin L, Forte AE, Deng B, Rafsanjani A, Bertoldi K (2020) Kirigami-inspired inflatables with programmable shapes. Adv Mater 32(33):e2001863. https://doi.org/10.1002/adma.202001863

    Article  Google Scholar 

  301. Harne RL, Lynd DT (2016) Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy. Smart Mater Struct 25(8):085031. https://doi.org/10.1088/0964-1726/25/8/085031

    Article  Google Scholar 

  302. Lynd DT, Harne RL (2017) Strategies to predict radiated sound fields from foldable, Miura-ori-based transducers for acoustic beamfolding. J Acoust Soc Am 141(1):480–489. https://doi.org/10.1121/1.4974204

    Article  Google Scholar 

  303. Babaee S, Overvelde JTB, Chen ER, Tournat V, Bertoldi K (2016) Reconfigurable origami-inspired acoustic waveguides. Sci Adv 2(11):e1601019. https://doi.org/10.1126/sciadv.1601019

    Article  Google Scholar 

  304. Thota M, Wang KW (2017) Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation. J Appl Phys 122(15):154901. https://doi.org/10.1063/1.4991026

    Article  Google Scholar 

  305. Thota M, Li S, Wang KW (2017) Lattice reconfiguration and phononic band-gap adaptation via origami folding. Phys Rev B 95(6):064307. https://doi.org/10.1103/PhysRevB.95.064307

    Article  Google Scholar 

  306. He YL, Zhang PW, You Z, Li ZQ, Wang ZH, Shu XF (2020) Programming mechanical metamaterials using origami tessellations. Compos Sci Technol 189:108015. https://doi.org/10.1016/j.compscitech.2020.108015

    Article  Google Scholar 

  307. Yasuda H, Tachi T, Lee M, Yang J (2017) Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat Commun 8(1):962. https://doi.org/10.1038/s41467-017-00670-w

    Article  Google Scholar 

  308. Fang H, Wang KW, Li S (2017) Asymmetric energy barrier and mechanical diode effect from folding multi-stable stacked-origami. Extreme Mech Lett 17:7–15. https://doi.org/10.1016/j.eml.2017.09.008

    Article  Google Scholar 

  309. Boatti E, Vasios N, Bertoldi K (2017) Origami metamaterials for tunable thermal expansion. Adv Mater 29(26):1700360. https://doi.org/10.1002/adma.201700360

    Article  Google Scholar 

  310. Faber JA, Arrieta AF, Studart AR (2018) Bioinspired spring origami. Science 359(6382):1386–1391. https://doi.org/10.1126/science.aap7753

    Article  Google Scholar 

  311. Liu B, Silverberg JL, Evans AA, Santangelo CD, Lang RJ, Hull TC, Cohen I (2018) Topological kinematics of origami metamaterials. Nat Phys 14(8):811–815. https://doi.org/10.1038/s41567-018-0150-8

    Article  Google Scholar 

  312. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377. https://doi.org/10.1126/science.1252291

    Article  Google Scholar 

  313. Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(1):34924. https://doi.org/10.1038/srep34924

    Article  Google Scholar 

  314. Muhammad, Lim CW, Li J, Zhao Z (2020) Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics. Extreme Mech Lett 41:100994. https://doi.org/10.1016/j.eml.2020.100994

    Article  Google Scholar 

  315. Chen Y, Qian F, Zuo L, Scarpa F, Wang L (2017) Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments. Extreme Mech Lett 17:24–32. https://doi.org/10.1016/j.eml.2017.09.012

    Article  Google Scholar 

  316. Weeger O, Boddeti N, Yeung SK, Kaijima S, Dunn ML (2019) Digital design and nonlinear simulation for additive manufacturing of soft lattice structures. Addit Manuf 25:39–49. https://doi.org/10.1016/j.addma.2018.11.003

    Article  Google Scholar 

  317. Jiang H, Zhang Z, Chen Y (2020) 3D printed tubular lattice metamaterials with engineered mechanical performance. Appl Phys Lett 117(1):011906. https://doi.org/10.1063/5.0014932

    Article  Google Scholar 

  318. Li T, Hu X, Chen Y, Wang L (2017) Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson’s ratio. Sci Rep 7(1):8949. https://doi.org/10.1038/s41598-017-09218-w

    Article  Google Scholar 

  319. Montero de Espinosa FR, Jiménez E, Torres M (1998) Ultrasonic Band Gap in a Periodic Two-Dimensional Composite. Phys Rev Lett 80(6):1208–1211. https://doi.org/10.1103/PhysRevLett.80.1208

    Article  Google Scholar 

  320. Levi-Civita MdT (1916) Nozione di parallelismo in una varieta qualunque e conseguente specificazione geometrica della curvatura Riemanniana. Rend Circolo Mat Palermo (1884–1940) 42(1):173–204

    Article  Google Scholar 

  321. Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A Math Phys Sci 392(1802):45–57. https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  MATH  Google Scholar 

  322. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49(6):405–408. https://doi.org/10.1103/PhysRevLett.49.405

    Article  Google Scholar 

  323. Simon B (1983) Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Phys Rev Lett 51(24):2167–2170. https://doi.org/10.1103/PhysRevLett.51.2167

    Article  MathSciNet  Google Scholar 

  324. Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95(22):226801. https://doi.org/10.1103/PhysRevLett.95.226801

    Article  Google Scholar 

  325. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82(4):3045–3067. https://doi.org/10.1103/RevModPhys.82.3045

    Article  Google Scholar 

  326. Huber SD (2016) Topological mechanics. Nat Phys 12(7):621–623. https://doi.org/10.1038/nphys3801

    Article  Google Scholar 

  327. Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B (2015) Topological acoustics. Phys Rev Lett 114(11):114301. https://doi.org/10.1103/PhysRevLett.114.114301

    Article  Google Scholar 

  328. Tomita A, Chiao RY (1986) Observation of Berry’s topological phase by use of an optical fiber. Phys Rev Lett 57(8):937–940. https://doi.org/10.1103/PhysRevLett.57.937

    Article  Google Scholar 

  329. Boulanger J, Le Bihan N, Catheline S, Rossetto V (2012) Observation of a non-adiabatic geometric phase for elastic waves. Ann Phys 327(3):952–958. https://doi.org/10.1016/j.aop.2011.11.014

    Article  MATH  Google Scholar 

  330. Wang S, Ma G, Chan CT (2018) Topological transport of sound mediated by spin-redirection geometric phase. Sci Adv 4(2):eaaq1475. https://doi.org/10.1126/sciadv.aaq1475

    Article  Google Scholar 

  331. Atala M, Aidelsburger M, Barreiro JT, Abanin D, Kitagawa T, Demler E, Bloch I (2013) Direct measurement of the Zak phase in topological Bloch bands. Nat Phys 9(12):795–800. https://doi.org/10.1038/Nphys2790

    Article  Google Scholar 

  332. Xiao M, Ma GC, Yang ZY, Sheng P, Zhang ZQ, Chan CT (2015) Geometric phase and band inversion in periodic acoustic systems. Nat Phys 11(3):240–244. https://doi.org/10.1038/Nphys3228

    Article  Google Scholar 

  333. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204. https://doi.org/10.1038/nature04235

    Article  Google Scholar 

  334. Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro JT, Nascimbène S, Cooper NR, Bloch I, Goldman N (2014) Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat Phys 11:162. https://doi.org/10.1038/nphys3171

    Article  Google Scholar 

  335. Zhang F, MacDonald AH, Mele EJ (2013) Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc Natl Acad Sci U S A 110(26):10546–10551. https://doi.org/10.1073/pnas.1308853110

    Article  Google Scholar 

  336. Zhang Z, Tian Y, Cheng Y, Wei Q, Liu X, Christensen J (2018) Topological acoustic delay line. Phys Rev Appl 9(3):034032. https://doi.org/10.1103/PhysRevApplied.9.034032

    Article  Google Scholar 

  337. Haldane FD (1988) Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly.” Phys Rev Lett 61(18):2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015

    Article  Google Scholar 

  338. Bernevig BA, Hughes TL, Zhang SC (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806):1757–1761. https://doi.org/10.1126/science.1133734

    Article  Google Scholar 

  339. Yan M, Lu J, Li F, Deng W, Huang X, Ma J, Liu Z (2018) On-chip valley topological materials for elastic wave manipulation. Nat Mater 17(11):993–998. https://doi.org/10.1038/s41563-018-0191-5

    Article  Google Scholar 

  340. Lu L, Joannopoulos JD, Soljacic M (2014) Topological photonics. Nat Photonics 8(11):821–829. https://doi.org/10.1038/Nphoton.2014.248

    Article  Google Scholar 

  341. Brendel C, Peano V, Painter O, Marquardt F (2018) Snowflake phononic topological insulator at the nanoscale. Phys Rev B 97(2):1–5. https://doi.org/10.1103/PhysRevB.97.020102

    Article  Google Scholar 

  342. Foehr A, Bilal OR, Huber SD, Daraio C (2018) Spiral-based phononic plates: from wave beaming to topological insulators. Phys Rev Lett 120(20):205501. https://doi.org/10.1103/PhysRevLett.120.205501

    Article  Google Scholar 

  343. Xia JP, Jia D, Sun HX, Yuan SQ, Ge Y, Si QR, Liu XJ (2018) Programmable coding acoustic topological insulator. Adv Mater 30(46):e1805002. https://doi.org/10.1002/adma.201805002

    Article  Google Scholar 

  344. He C, Ni X, Ge H, Sun XC, Chen YB, Lu MH, Liu XP, Chen YF (2016) Acoustic topological insulator and robust one-way sound transport. Nat Phys 12(12):1124–1129. https://doi.org/10.1038/Nphys3867

    Article  Google Scholar 

  345. Khanikaev AB, Fleury R, Mousavi SH, Alu A (2015) Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat Commun 6:8260. https://doi.org/10.1038/ncomms9260

    Article  Google Scholar 

  346. Miniaci M, Pal RK, Morvan B, Ruzzene M (2018) Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys Rev X. https://doi.org/10.1103/PhysRevX.8.031074

    Article  Google Scholar 

  347. Kim I, Iwamoto S, Arakawa Y (2018) Topologically protected elastic waves in one-dimensional phononic crystals of continuous media. Appl Phys Express. https://doi.org/10.7567/Apex.11.017201

    Article  Google Scholar 

  348. Okuno K, Tsuruta K (2020) Topologically robust sound wave transport in two-dimensional phononic crystal with a circular rod arrangement in water. Jpn J Appl Phys 59(SK):SKKA05. https://doi.org/10.35848/1347-4065/ab7c0e

    Article  Google Scholar 

  349. Shi X, Chaunsali R, Li F, Yang J (2019) Elastic Weyl points and surface arc states in three-dimensional structures. Phys Rev Appl 12(2):024058. https://doi.org/10.1103/PhysRevApplied.12.024058

    Article  Google Scholar 

  350. Weiner M, Ni X, Li M, Alù A, Khanikaev AB (2020) Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial. Sci Adv 6(13):eaay4166. https://doi.org/10.1126/sciadv.aay4166

    Article  Google Scholar 

  351. Li X, Meng Y, Wu XX, Yan S, Huang YZ, Wang SX, Wen WJ (2018) Su-Schrieffer-Heeger model inspired acoustic interface states and edge states. Appl Phys Lett 113(20):203501. https://doi.org/10.1063/1.5051523

    Article  Google Scholar 

  352. Xiao Y-X, Ma G, Zhang Z-Q, Chan CT (2017) Topological subspace-induced bound state in the continuum. Phys Rev Lett 118(16):166803. https://doi.org/10.1103/PhysRevLett.118.166803

    Article  Google Scholar 

  353. Yin J, Ruzzene M, Wen J, Yu D, Cai L, Yue L (2018) Band transition and topological interface modes in 1D elastic phononic crystals. Sci Rep 8(1):6806. https://doi.org/10.1038/s41598-018-24952-5

    Article  Google Scholar 

  354. Zhou WJ, Chen WQ, Muhammad, Lim CW (2019) Surface effect on the propagation of flexural waves in periodic nano-beam and the size-dependent topological properties. Compos Struct 216:427–435. https://doi.org/10.1016/j.compstruct.2019.03.016

    Article  Google Scholar 

  355. Jin YB, Torrent D, Djafari-Rouhani B (2018) Robustness of conventional and topologically protected edge states in phononic crystal plates. Phys Rev B 98(5):054307. https://doi.org/10.1103/PhysRevB.98.054307

    Article  Google Scholar 

  356. Yu SY, He C, Wang Z, Liu FK, Sun XC, Li Z, Lu HZ, Lu MH, Liu XP, Chen YF (2018) Elastic pseudospin transport for integratable topological phononic circuits. Nat Commun 9(1):3072. https://doi.org/10.1038/s41467-018-05461-5

    Article  Google Scholar 

  357. Huo SY, Chen JJ, Huang HB (2018) Topologically protected edge states for out-of-plane and in-plane bulk elastic waves. J Phys Condens Matter 30(14):145403. https://doi.org/10.1088/1361-648X/aab22a

    Article  Google Scholar 

  358. Chen Y, Liu XN, Hu GK (2019) Topological phase transition in mechanical honeycomb lattice. J Mech Phys Solids 122:54–68. https://doi.org/10.1016/j.jmps.2018.08.021

    Article  MathSciNet  Google Scholar 

  359. Pal RK, Rosa MIN, Ruzzene M (2019) Topological bands and localized vibration modes in quasiperiodic beams. New J Phys 21(9):093017. https://doi.org/10.1088/1367-2630/ab3cd7

    Article  MathSciNet  Google Scholar 

  360. Mousavi SH, Khanikaev AB, Wang Z (2015) Topologically protected elastic waves in phononic metamaterials. Nat Commun 6:8682. https://doi.org/10.1038/ncomms9682

    Article  Google Scholar 

  361. Huo SY, Chen JJ, Huang HB, Huang GL (2017) Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins. Sci Rep 7(1):10335. https://doi.org/10.1038/s41598-017-10857-2

    Article  Google Scholar 

  362. Xiao M, Zhang ZQ, Chan CT (2014) Surface impedance and bulk band geometric phases in one-dimensional systems. Phys Rev X 4(2):021017. https://doi.org/10.1103/PhysRevX.4.021017

    Article  Google Scholar 

  363. Zhao JM, Huo SY, Huang HB, Chen JJ (2018) Topological interface states of shear horizontal guided wave in one-dimensional phononic quasicrystal slabs. Phys Status Solidi-R. https://doi.org/10.1002/pssr.201800322

    Article  Google Scholar 

  364. Huang HB, Chen JJ, Huo SY (2017) Simultaneous topological Bragg and locally resonant edge modes of shear horizontal guided wave in one-dimensional structure. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aa7619

    Article  Google Scholar 

  365. Wang H, Liu D, Fang W, Lin S, Liu Y, Liang Y (2020) Tunable topological interface states in one-dimensional extended granular crystals. Int J Mech Sci 176:105549. https://doi.org/10.1016/j.ijmecsci.2020.105549

    Article  Google Scholar 

  366. Li S, Kim I, Iwamoto S, Zang J, Yang J (2019) Valley anisotropy in elastic metamaterials. Phys Rev B 100(19):195102. https://doi.org/10.1103/PhysRevB.100.195102

    Article  Google Scholar 

  367. Yu Z, Ren Z, Lee J (2019) Phononic topological insulators based on six-petal holey silicon structures. Sci Rep 9(1):1805. https://doi.org/10.1038/s41598-018-38387-5

    Article  Google Scholar 

  368. Yang L, Yu K, Wu Y, Zhao R, Liu S (2018) Topological spin-Hall edge states of flexural wave in perforated metamaterial plates. J Phys D Appl Phys 51(32):325302. https://doi.org/10.1088/1361-6463/aace49

    Article  Google Scholar 

  369. Zhu Z, Huang X, Lu J, Yan M, Li F, Deng W, Liu Z (2019) Negative refraction and partition in acoustic valley materials of a square lattice. Phys Rev Appl 12(2):024007. https://doi.org/10.1103/PhysRevApplied.12.024007

    Article  Google Scholar 

  370. Rosa MIN, Pal RK, Arruda JRF, Ruzzene M (2019) Edge states and topological pumping in spatially modulated elastic lattices. Phys Rev Lett 123(3):034301. https://doi.org/10.1103/PhysRevLett.123.034301

    Article  Google Scholar 

  371. Lee T, Iizuka H (2019) Bragg scattering based acoustic topological transition controlled by local resonance. Phys Rev B 99(6):064305. https://doi.org/10.1103/PhysRevB.99.064305

    Article  Google Scholar 

  372. Wang W, Jin Y, Wang W, Bonello B, Djafari-Rouhani B, Fleury R (2020) Robust Fano resonance in a topological mechanical beam. Phys Rev B 101(2):024101. https://doi.org/10.1103/PhysRevB.101.024101

    Article  Google Scholar 

  373. Zheng L-Y, Achilleos V, Chen Z-G, Richoux O, Theocharis G, Wu Y, Mei J, Felix S, Tournat V, Pagneux V (2020) Acoustic graphene network loaded with Helmholtz resonators: a first-principle modeling, Dirac cones, edge and interface waves. New J Phys 22(1):013029. https://doi.org/10.1088/1367-2630/ab60f1

    Article  Google Scholar 

  374. Fan L, He Y, Zhao X, Chen X-A (2020) Subwavelength and broadband tunable topological interface state for flexural wave in one-dimensional locally resonant phononic crystal. J Appl Phys 127(23):235106. https://doi.org/10.1063/5.0001548

    Article  Google Scholar 

  375. Yang Z, Gao F, Zhang B (2016) Topological water wave states in a one-dimensional structure. Sci Rep 6(1):29202. https://doi.org/10.1038/srep29202

    Article  Google Scholar 

  376. Wang Z, Liu F-K, Yu S-Y, Yan S-L, Lu M-H, Jing Y, Chen Y-F (2019) Guiding robust valley-dependent edge states by surface acoustic waves. J Appl Phys 125(4):044502. https://doi.org/10.1063/1.5066034

    Article  Google Scholar 

  377. Liu H, Huo S-Y, Feng L-Y, Huang H-B, Chen J-J (2019) Thermally tunable topological edge states for in-plane bulk waves in solid phononic crystals. Ultrasonics 94:227–234. https://doi.org/10.1016/j.ultras.2018.09.006

    Article  Google Scholar 

  378. Silva JRM, Vasconcelos MS, Anselmo DHAL, Mello VD (2019) Phononic topological states in 1D quasicrystals. J Phys Condens Matter 31(50):505405. https://doi.org/10.1088/1361-648x/ab312a

    Article  Google Scholar 

  379. Zhao DG, Xiao M, Ling CW, Chan CT, Fung KH (2018) Topological interface modes in local resonant acoustic systems. Phys Rev B. https://doi.org/10.1103/PhysRevB.98.014110

    Article  Google Scholar 

  380. Oudich M, Deng Y, Tao M, Jing Y (2019) Space-time phononic crystals with anomalous topological edge states. Phys Rev Res 1(3):033069. https://doi.org/10.1103/PhysRevResearch.1.033069

    Article  Google Scholar 

  381. Li S, Zhao D, Niu H, Zhu X, Zang J (2018) Observation of elastic topological states in soft materials. Nat Commun 9(1):1370. https://doi.org/10.1038/s41467-018-03830-8

    Article  Google Scholar 

  382. Zhu W, Ma G (2020) Distinguishing topological corner modes in higher-order topological insulators of finite size. Phys Rev B 101(16):161301. https://doi.org/10.1103/PhysRevB.101.161301

    Article  Google Scholar 

  383. Chen Z-G, Wu Y (2016) Tunable topological phononic crystals. Phys Rev Appl 5(5):054021. https://doi.org/10.1103/PhysRevApplied.5.054021

    Article  Google Scholar 

  384. Li G-H, Ma T-X, Wang Y-Z, Wang Y-S (2020) Active control on topological immunity of elastic wave metamaterials. Sci Rep 10(1):9376. https://doi.org/10.1038/s41598-020-66269-2

    Article  Google Scholar 

  385. Chen Z, Zhou W, Lim CW (2020) Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. Int J Nonlinear Mech 125:103535. https://doi.org/10.1016/j.ijnonlinmec.2020.103535

    Article  Google Scholar 

  386. Chen Z, Wang G, Zhou W, Lim CW (2020) Elastic foundation induced wide bandgaps for actively-tuned topologically protected wave propagation in phononic crystal beams. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.106215

    Article  Google Scholar 

  387. Chen Z, Zhou W, Lim CW (2020) Tunable frequency response of topologically protected interface modes for membrane-type metamaterials via voltage control. J Sound Vib. https://doi.org/10.1016/j.jsv.2020.115870

    Article  Google Scholar 

  388. Zhang Q, Chen Y, Zhang K, Hu G (2019) Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mech Lett 28:76–80. https://doi.org/10.1016/j.eml.2019.03.002

    Article  Google Scholar 

  389. Nguyen BH, Zhuang X, Park HS, Rabczuk T (2019) Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal. J Appl Phys 125(9):095106. https://doi.org/10.1063/1.5066088

    Article  Google Scholar 

  390. Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar JES, Cummer SA, Jun Huang T (2020) Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nat Commun 11(1):762. https://doi.org/10.1038/s41467-020-14553-0

    Article  Google Scholar 

  391. Xie Y, Wang W, Chen H, Konneker A, Popa B-I, Cummer SA (2014) Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun 5(1):5553. https://doi.org/10.1038/ncomms6553

    Article  Google Scholar 

  392. Li Y, Jiang X, Li R-Q, Liang B, Zou X-Y, Yin L-l, Cheng J-C (2014) Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys Rev Appl 2(6):064002. https://doi.org/10.1103/PhysRevApplied.2.064002

    Article  Google Scholar 

  393. Faure C, Richoux O, Félix S, Pagneux V (2016) Experiments on metasurface carpet cloaking for audible acoustics. Appl Phys Lett 108(6):064103. https://doi.org/10.1063/1.4941810

    Article  Google Scholar 

  394. Qi S, Li Y, Assouar B (2017) Acoustic focusing and energy confinement based on multilateral metasurfaces. Phys Rev Appl 7(5):054006. https://doi.org/10.1103/PhysRevApplied.7.054006

    Article  Google Scholar 

  395. De Ponti JM, Colombi A, Ardito R, Braghin F, Corigliano A, Craster RV (2020) Graded elastic metasurface for enhanced energy harvesting. New J Phys 22(1):013013. https://doi.org/10.1088/1367-2630/ab6062

    Article  Google Scholar 

  396. Zhu Y-F, Zou X-Y, Li R-Q, Jiang X, Tu J, Liang B, Cheng J-C (2015) Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci Rep 5(1):10966. https://doi.org/10.1038/srep10966

    Article  Google Scholar 

  397. Li Y, Shen C, Xie Y, Li J, Wang W, Cummer SA, Jing Y (2017) Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys Rev Lett 119(3):035501. https://doi.org/10.1103/PhysRevLett.119.035501

    Article  Google Scholar 

  398. Zhu X, Li K, Zhang P, Zhu J, Zhang J, Tian C, Liu S (2016) Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat Commun 7(1):11731. https://doi.org/10.1038/ncomms11731

    Article  Google Scholar 

  399. Palermo A, Vitali M, Marzani A (2018) Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation. Soil Dyn Earthq Eng 113:265–277. https://doi.org/10.1016/j.soildyn.2018.05.035

    Article  Google Scholar 

  400. Zhu Y, Fan X, Liang B, Cheng J, Jing Y (2017) Ultrathin acoustic metasurface-based schroeder diffuser. Phys Rev X 7(2):021034. https://doi.org/10.1103/PhysRevX.7.021034

    Article  Google Scholar 

  401. Cao L, Yang Z, Xu Y, Fan S-W, Zhu Y, Chen Z, Li Y, Assouar B (2020) Flexural wave absorption by lossy gradient elastic metasurface. J Mech Phys Solids 143:104052. https://doi.org/10.1016/j.jmps.2020.104052

    Article  MathSciNet  Google Scholar 

  402. Liu Y, Liang Z, Liu F, Diba O, Lamb A, Li J (2017) Source illusion devices for flexural lamb waves using elastic metasurfaces. Phys Rev Lett 119(3):034301. https://doi.org/10.1103/PhysRevLett.119.034301

    Article  Google Scholar 

  403. Lee H, Lee JK, Seung HM, Kim YY (2018) Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering. J Mech Phys Solids 112:577–593. https://doi.org/10.1016/j.jmps.2017.11.025

    Article  Google Scholar 

  404. Zhang J, Zhang X, Xu F, Ding X, Deng M, Hu N, Zhang C (2020) Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. J Sound Vib 481:115440. https://doi.org/10.1016/j.jsv.2020.115440

    Article  Google Scholar 

  405. Su X, Lu Z, Norris AN (2018) Elastic metasurfaces for splitting SV- and P-waves in elastic solids. J Appl Phys 123(9):091701. https://doi.org/10.1063/1.5007731

    Article  Google Scholar 

  406. Bilal OR, Costanza V, Israr A, Palermo A, Celli P, Lau F, Daraio C (2020) A flexible spiraling-metasurface as a versatile haptic interface. Adv Mater Technol. https://doi.org/10.1002/admt.202000181

    Article  Google Scholar 

  407. Muhammad, Lim CW, Reddy JN, Carrera E, Xu X, Zhou Z (2020) Surface elastic waves whispering gallery modes based subwavelength tunable waveguide and cavity modes of the phononic crystals. Mech Adv Mater Struct 27(13):1053–1064. https://doi.org/10.1080/15376494.2020.1728451

    Article  Google Scholar 

  408. Muhammad, Wu T, Lim CW (2020) Forest trees as naturally available seismic metamaterials: low frequency rayleigh wave with extremely wide bandgaps. Int J Struct Stab Dyn. https://doi.org/10.1142/s0219455420430142

    Article  MathSciNet  Google Scholar 

  409. Colombi A, Roux P, Guenneau S, Gueguen P, Craster RV (2016) Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6:19238. https://doi.org/10.1038/srep19238

    Article  Google Scholar 

  410. Khelif A, Achaoui Y, Aoubiza B (2012) Surface acoustic waves in pillars-based two-dimensional phononic structures with different lattice symmetries. J Appl Phys 112(3):033511. https://doi.org/10.1063/1.4737780

    Article  Google Scholar 

  411. Jin YB, Bonello B, Moiseyenko RP, Pennec Y, Boyko O, Djafari-Rouhani B (2017) Pillar-type acoustic metasurface. Phys Rev B 96(10):104311. https://doi.org/10.1103/PhysRevB.96.104311

    Article  Google Scholar 

  412. Palermo A, Marzani A (2018) Control of Love waves by resonant metasurfaces. Sci Rep 8(1):7234. https://doi.org/10.1038/s41598-018-25503-8

    Article  Google Scholar 

  413. Brule S, Javelaud EH, Enoch S, Guenneau S (2014) Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 112(13):133901. https://doi.org/10.1103/PhysRevLett.112.133901

    Article  Google Scholar 

  414. Colombi A, Ageeva V, Smith RJ, Clare A, Patel R, Clark M, Colquitt D, Roux P, Guenneau S, Craster RV (2017) Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Sci Rep 7(1):6750. https://doi.org/10.1038/s41598-017-07151-6

    Article  Google Scholar 

  415. Cao L, Yang Z, Xu Y (2018) Steering elastic SH waves in an anomalous way by metasurface. J Sound Vib 418:1–14. https://doi.org/10.1016/j.jsv.2017.12.032

    Article  Google Scholar 

  416. Chen Y, Li X, Nassar H, Hu G, Huang G (2018) A programmable metasurface for real time control of broadband elastic rays. Smart Mater Struct 27(11):115011. https://doi.org/10.1088/1361-665x/aae27b

    Article  Google Scholar 

  417. Cao L, Xu Y, Assouar B, Yang Z (2018) Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces. Appl Phys Lett 113(18):183506. https://doi.org/10.1063/1.5050671

    Article  Google Scholar 

  418. Cao L, Yang Z, Xu Y, Fan S-W, Zhu Y, Chen Z, Vincent B, Assouar B (2020) Disordered elastic metasurfaces. Phys Rev Appl 13(1):014054. https://doi.org/10.1103/PhysRevApplied.13.014054

    Article  Google Scholar 

  419. Brûlé S, Ungureanu B, Achaoui Y, Diatta A, Aznavourian R, Antonakakis T, Craster R, Enoch S, Guenneau S (2017) Metamaterial-like transformed urbanism. Innovative Infrastructure. Solutions 2(1):20. https://doi.org/10.1007/s41062-017-0063-x

    Article  Google Scholar 

  420. Brûlé S, Javelaud EH, Enoch S, Guenneau S (2017) Flat lens effect on seismic waves propagation in the subsoil. Sci Rep 7(1):18066. https://doi.org/10.1038/s41598-017-17661-y

    Article  Google Scholar 

  421. Finocchio G, Casablanca O, Ricciardi G, Alibrandi U, Garesci F, Chiappini M, Azzerboni B (2014) Seismic metamaterials based on isochronous mechanical oscillators. Appl Phys Lett. https://doi.org/10.1063/1.4876961

    Article  Google Scholar 

  422. Shi ZF, Cheng ZB, Xiang HJ (2014) Seismic isolation foundations with effective attenuation zones. Soil Dyn Earthq Eng 57:143–151. https://doi.org/10.1016/j.soildyn.2013.11.009

    Article  Google Scholar 

  423. Yan Y, Cheng Z, Menq F, Mo YL, Tang Y, Shi Z (2015) Three dimensional periodic foundations for base seismic isolation. Smart Mater Struct. https://doi.org/10.1088/0964-1726/24/7/075006

    Article  Google Scholar 

  424. La Salandra V, Wenzel M, Bursi OS, Carta G, Movchan AB (2017) Conception of a 3D metamaterial-based foundation for static and seismic protection of fuel storage tanks. Front Mater 4:1–13. https://doi.org/10.3389/fmats.2017.00030

    Article  Google Scholar 

  425. Yan Y, Laskar A, Cheng Z, Menq F, Tang Y, Mo YL, Shi Z (2014) Seismic isolation of two dimensional periodic foundations. J Appl Phys. https://doi.org/10.1063/1.4891837

    Article  Google Scholar 

  426. Cheng Z, Shi Z, Palermo A, Xiang H, Guo W, Marzani A (2020) Seismic vibrations attenuation via damped layered periodic foundations. Eng Struct 211:110427. https://doi.org/10.1016/j.engstruct.2020.110427

    Article  Google Scholar 

  427. Fabbrocino F, Amendola A, Benzoni G, Fraternali F (2015) Seismic application of pentamode lattices. Ing Sismica 33:62–70

    Google Scholar 

  428. Krodel S, Thome N, Daraio C (2015) Wide band-gap seismic metastructures. Extreme Mech Lett 4:111–117. https://doi.org/10.1016/j.eml.2015.05.004

    Article  Google Scholar 

  429. Colquitt DJ, Colombi A, Craster RV, Roux P, Guenneau SRL (2017) Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J Mech Phys Solids 99:379–393. https://doi.org/10.1016/j.jmps.2016.12.004

    Article  MathSciNet  Google Scholar 

  430. Achaoui Y, Ungureanu B, Enoch S, Brule S, Guenneau S (2016) Seismic waves damping with arrays of inertial resonators. Extreme Mech Lett 8:30–37. https://doi.org/10.1016/j.eml.2016.02.004

    Article  Google Scholar 

  431. Maurel A, Marigo J-J, Pham K, Guenneau S (2018) Conversion of Love waves in a forest of trees. Phys Rev B 98(13):134311. https://doi.org/10.1103/PhysRevB.98.134311

    Article  Google Scholar 

  432. Miniaci M, Krushynska A, Bosia F, Pugno NM (2016) Large scale mechanical metamaterials as seismic shields. New J Phys 18:0–14. https://doi.org/10.1088/1367-2630/18/8/083041

    Article  Google Scholar 

  433. Lee D, Oh JH, Kang IS, Rho J (2019) Seismic phononic crystals by elastodynamic Navier equation. Phys Rev E 100(6):063002. https://doi.org/10.1103/PhysRevE.100.063002

    Article  Google Scholar 

  434. Palermo A, Krodel S, Marzani A, Daraio C (2016) Engineered metabarrier as shield from seismic surface waves. Sci Rep 6:39356. https://doi.org/10.1038/srep39356

    Article  Google Scholar 

  435. Achaoui Y, Antonakakis T, Brûlé S, Craster RV, Enoch S, Guenneau S (2017) Clamped seismic metamaterials: ultra-low frequency stop bands. New J Phys. https://doi.org/10.1088/1367-2630/aa6e21

    Article  Google Scholar 

  436. Cai YQ, Ding GY, Xu CJ (2009) Amplitude reduction of elastic waves by a row of piles in poroelastic soil. Comput Geotech 36(3):463–473. https://doi.org/10.1016/j.compgeo.2008.08.015

    Article  Google Scholar 

  437. Huang JK, Shi ZF (2013) Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves. J Sound Vib 332(19):4423–4439. https://doi.org/10.1016/j.jsv.2013.03.028

    Article  Google Scholar 

  438. Huang JK, Shi ZF (2013) Application of periodic theory to rows of piles for horizontal vibration attenuation. Int J Geomech 13(2):132–142. https://doi.org/10.1061/(Asce)Gm.1943-5622.0000193

    Article  Google Scholar 

  439. Pu X, Shi Z (2019) Periodic pile barriers for Rayleigh wave isolation in a poroelastic half-space. Soil Dyn Earthq Eng 121:75–86. https://doi.org/10.1016/j.soildyn.2019.02.029

    Article  Google Scholar 

  440. Pu XB, Shi ZF (2018) Surface-wave attenuation by periodic pile barriers in layered soils. Constr Build Mater 180:177–187. https://doi.org/10.1016/j.conbuildmat.2018.05.264

    Article  Google Scholar 

  441. Colombi A, Zaccherini R, Aguzzi G, Palermo A, Chatzi E (2020) Mitigation of seismic waves: metabarriers and metafoundations bench tested. J Sound Vib 485:115537. https://doi.org/10.1016/j.jsv.2020.115537

    Article  Google Scholar 

  442. Xiong C, Shi ZF, Xiang HJ (2012) Attenuation of building vibration using periodic foundations. Adv Struct Eng 15(8):1375–1388. https://doi.org/10.1260/1369-4332.15.8.1375

    Article  Google Scholar 

  443. Xiang HJ, Shi ZF, Wang SJ, Mo YL (2012) Periodic materials-based vibration attenuation in layered foundations: experimental validation. Smart Mater Struct. https://doi.org/10.1088/0964-1726/21/11/112003

    Article  Google Scholar 

  444. Muhammad, Lim CW (2020) Natural seismic metamaterials: the role of tree branches in the birth of Rayleigh waves bandgap. Trees, 1, 1-17. https://doi.org/10.1007/s00468-021-02117-8

  445. Palermo A, Krödel S, Matlack KH, Zaccherini R, Dertimanis VK, Chatzi EN, Marzani A, Daraio C (2018) Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface. Phys Rev Appl 9(5):054026. https://doi.org/10.1103/PhysRevApplied.9.054026

    Article  Google Scholar 

  446. Zaccherini R, Colombi A, Palermo A, Dertimanis VK, Marzani A, Thomsen HR, Stojadinovic B, Chatzi EN (2020) Locally resonant metasurfaces for shear waves in granular media. Phys Rev Appl 13(3):034055. https://doi.org/10.1103/PhysRevApplied.13.034055

    Article  Google Scholar 

  447. Pu XB, Shi ZF, Xiang HJ (2018) Feasibility of ambient vibration screening by periodic geofoam-filled trenches. Soil Dyn Earthq Eng 104:228–235. https://doi.org/10.1016/j.soildyn.2017.10.022

    Article  Google Scholar 

  448. Pu XB, Shi ZF (2017) A novel method for identifying surface waves in periodic structures. Soil Dyn Earthq Eng 98:67–71. https://doi.org/10.1016/j.soildyn.2017.04.011

    Article  Google Scholar 

  449. Meng LK, Shi ZF, Cheng ZB (2018) A new perspective for analyzing complex band structures of phononic crystals. J Appl Phys. https://doi.org/10.1063/1.4999817

    Article  Google Scholar 

  450. Pu X, Shi Z (2020) Broadband surface wave attenuation in periodic trench barriers. J Sound Vib 468:115130. https://doi.org/10.1016/j.jsv.2019.115130

    Article  Google Scholar 

  451. Franchini A, Bursi OS, Basone F, Sun F (2020) Finite locally resonant metafoundations for the protection of slender storage tanks against vertical ground accelerations. Smart Mater Struct 29(5):055017. https://doi.org/10.1088/1361-665x/ab7e1d

    Article  Google Scholar 

  452. Pu X, Palermo A, Cheng Z, Shi Z, Marzani A (2020) Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves. Int J Eng Sci 154:103347. https://doi.org/10.1016/j.ijengsci.2020.103347

    Article  MathSciNet  MATH  Google Scholar 

  453. Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z (2020) Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput Methods Appl Mech Eng 361:112737. https://doi.org/10.1016/j.cma.2019.112737

    Article  MathSciNet  MATH  Google Scholar 

  454. Mao Y, He Q, Zhao X (2020) Designing complex architectured materials with generative adversarial networks. Sci Adv 6(17):eaaz4169. https://doi.org/10.1126/sciadv.aaz4169

    Article  Google Scholar 

  455. Gurbuz C, Kronowetter F, Dietz C, Eser M, Schmid J, Marburg S (2021) Generative adversarial networks for the design of acoustic metamaterials. J Acoust Soc Am 149(2):1162–1174. https://doi.org/10.1121/10.0003501

    Article  Google Scholar 

  456. Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA (2020) Deep learning for topology optimization of 2D metamaterials. Mater Design 196:109098. https://doi.org/10.1016/j.matdes.2020.109098

    Article  Google Scholar 

  457. Wu L, Liu L, Wang Y, Zhai Z, Zhuang H, Krishnaraju D, Wang Q, Jiang H (2020) A machine learning-based method to design modular metamaterials. Extreme Mech Lett 36:100657. https://doi.org/10.1016/j.eml.2020.100657

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by General Research Grants from the Research Grants Council of the Hong Kong Special Administrative Region (Project No. CityU 11216318) and City University of Hong Kong (Project No. 7005273)

Author information

Authors and Affiliations

Authors

Contributions

Muhammad: Conceptualization, Methodology, Investigation, Data compilation, Writing-original draft, Validation. C. W. Lim: Funding acquisition, Writing-review & editing, Project administration, Resources, Supervision.

Corresponding authors

Correspondence to Muhammad or C. W. Lim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest or personal relationship that could appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, Lim, C.W. From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials. Arch Computat Methods Eng 29, 1137–1198 (2022). https://doi.org/10.1007/s11831-021-09612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09612-8

Navigation