Skip to main content
Log in

Effect of Carbon Nanotubes and Porosity on Vibrational Behavior of Nanocomposite Structures: A Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper aims to present a comprehensive review of the effect of embedding porosity and enhancing with carbon nanotube (CNT) on the vibrational behavior of composite structures. This type of material belongs to the famous family of composites materials that have promising mechanical properties that can be scientifically manipulated and gradually changed into the desired directions and orientations. Due to this varying, the composite properties give more flexible and huge applications in industrial processing materials. Functionally graded materials (FGM) with reinforced CNTs have attracted more researchers to hugely investigate and many publications have been done so far. This study will mainly focus on the effect of porosity and CNT on vibrations of composite structures. For CNTs reinforced composite, CNTs volume fraction effect, methods and methodologies applied by various researchers and types and different geometric shapes will be reviewed. Similarly, the researchers have examined the influence of porosity on to the vibrational behavior of composite materials. Porous materials are members of a novel class of lightweight materials and they are designed to have continuously changeable mechanical properties along a smooth and certain direction which could be provided through the introduction of a graded porosity distribution along the thickness direction of the plates. A comprehensive examination of the influence of porosity distribution, porosity coefficient, and geometric parameters of different materials will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhang Y, Jin G, Chen M, Ye T, Yang C, Yin Y (2020) Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core. Compos Struct 244:112298. https://doi.org/10.1016/j.compstruct.2020.112298

    Article  Google Scholar 

  2. Bever MB, Duwez PE (1972) Gradients in composite materials. Mater Sci Eng 10:1–8. https://doi.org/10.1016/0025-5416(72)90059-6

    Article  Google Scholar 

  3. Shen M, Bever MB (1972) Gradients in polymeric materials. J Mater Sci 7:741–746. https://doi.org/10.1007/BF00549902

    Article  Google Scholar 

  4. Asmael M, Safaei B, Zeeshan Q, Zargar O, Nuhu AA (2021) Ultrasonic machining of carbon fiber–reinforced plastic composites: a review. Int J Adv Manuf Technol 113:3079–3120. https://doi.org/10.1007/S00170-021-06722-2

    Article  Google Scholar 

  5. Zhao S, Zhao Z, Yang Z, Ke LL, Kitipornchai S, Yang J (2020) Functionally graded graphene reinforced composite structures: a review. Eng Struct 210:110339. https://doi.org/10.1016/J.ENGSTRUCT.2020.110339

    Article  Google Scholar 

  6. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48. https://doi.org/10.1016/j.tws.2016.05.025

    Article  Google Scholar 

  7. Thanh Binh C, Van Long N, Minh TuT, Quang MP (2021) Nonlinear vibration of functionally graded porous variable thickness toroidal shell segments surrounded by elastic medium including the thermal effect. Compos Struct 255:112891. https://doi.org/10.1016/j.compstruct.2020.112891

    Article  Google Scholar 

  8. Chan DQ, Van Hoan P, Trung NT, Hoa LK, Huan DT (2021) Nonlinear buckling and post-buckling of imperfect FG porous sandwich cylindrical panels subjected to axial loading under various boundary conditions. Acta Mech 232:1163–1179. https://doi.org/10.1007/s00707-020-02882-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Tao C, Dai T (2021) Large amplitude free vibration of porous skew and elliptical nanoplates based on nonlocal elasticity by isogeometric analysis. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1873467

    Article  Google Scholar 

  10. Esen I, Özarpa C, Eltaher MA (2021) Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment. Compos Struct 261:113552. https://doi.org/10.1016/j.compstruct.2021.113552

    Article  Google Scholar 

  11. Van Quyen N, Van Thanh N, Quan TQ, Duc ND (2021) Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct 162:107571. https://doi.org/10.1016/j.tws.2021.107571

    Article  Google Scholar 

  12. Barati MR, Sadr MH, Zenkour AM (2016) Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int J Mech Sci 117:309–320. https://doi.org/10.1016/J.IJMECSCI.2016.09.012

    Article  Google Scholar 

  13. Javani M, Kiani Y, Eslami MR (2021) Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation. Compos Struct 261:113515. https://doi.org/10.1016/j.compstruct.2020.113515

    Article  Google Scholar 

  14. Qin Z, Zhao S, Pang X, Safaei B, Chu F (2020) A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. Int J Mech Sci 170:105341. https://doi.org/10.1016/j.ijmecsci.2019.105341

    Article  Google Scholar 

  15. Dai T, Yang Y, Dai HL, Tang H, Lin ZY (2019) Hygrothermal mechanical behaviors of a porous FG-CRC annular plate with variable thickness considering aggregation of CNTs. Compos Struct 215:198–213. https://doi.org/10.1016/j.compstruct.2019.02.061

    Article  Google Scholar 

  16. Zhao J, Xie F, Wang A, Shuai C, Tang J, Wang Q (2019) Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Compos Part B Eng 157:219–238. https://doi.org/10.1016/j.compositesb.2018.08.087

    Article  Google Scholar 

  17. El-Ashmawy AM, Xu Y, El-Mahdy LA (2021) Mechanical properties improvement of bi-directional functionally graded laminated MWCNT reinforced composite beams using an integrated tailoring–optimization approach. Microporous Mesoporous Mater 314:110875. https://doi.org/10.1016/j.micromeso.2021.110875

    Article  Google Scholar 

  18. Qin Z, Chu F, Zu J (2017) Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int J Mech Sci 133:91–99. https://doi.org/10.1016/j.ijmecsci.2017.08.012

    Article  Google Scholar 

  19. Pan Z, Liew KM (2020) Predicting vibration characteristics of rotating composite blades containing CNT-reinforced composite laminae and damaged fiber-reinforced composite laminae. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112580

    Article  Google Scholar 

  20. Setoodeh AR, Shojaee M, Malekzadeh P (2019) Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos Part B Eng 165:798–822. https://doi.org/10.1016/j.compositesb.2019.01.022

    Article  Google Scholar 

  21. Liew KM, Pan Z, Zhang LW (2020) The recent progress of functionally graded CNT reinforced composites and structures. Sci China Phys, Mech Astron 63:234601. https://doi.org/10.1007/s11433-019-1457-2

    Article  Google Scholar 

  22. Saleh B, Jiang J, Fathi R, Al-hababi T, Xu Q, Wang L et al (2020) 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos Part B Eng 201:108376. https://doi.org/10.1016/j.compositesb.2020.108376

    Article  Google Scholar 

  23. Safaei B, Moradi-Dastjerdi R, Chu F (2018) Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations. Compos Struct 192:28–37. https://doi.org/10.1016/j.compstruct.2018.02.022

    Article  Google Scholar 

  24. Segura MH, Singh K, Khan F (2021) A methodology for the design, fabrication and testing of axially graded polymeric structures with tailored vibration characteristics. Polym Test 94:107054. https://doi.org/10.1016/j.polymertesting.2021.107054

    Article  Google Scholar 

  25. Hosseini S, Rahimi G, Anani Y (2021) A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT. Eng Anal Bound Elem 125:168–177. https://doi.org/10.1016/j.enganabound.2020.12.016

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang JF, Yang JP, Tam LH, Zhang W (2021) Molecular dynamics-based multiscale nonlinear vibrations of PMMA/CNT composite plates. Mech Syst Signal Process 153:107530. https://doi.org/10.1016/j.ymssp.2020.107530

    Article  Google Scholar 

  27. Al Rjoub YS, Alshatnawi JA (2020) Free vibration of functionally-graded porous cracked plates. Structures 28:2392–2403. https://doi.org/10.1016/j.istruc.2020.10.059

    Article  Google Scholar 

  28. Noroozi AR, Malekzadeh P, Dimitri R, Tornabene F (2020) Meshfree radial point interpolation method for the vibration and buckling analysis of FG-GPLRC perforated plates under an in-plane loading. Eng Struct 221:111000. https://doi.org/10.1016/j.engstruct.2020.111000

    Article  Google Scholar 

  29. Lei ZX, Zhang LW, Liew KM (2016) Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos Part B Eng 84:211–221. https://doi.org/10.1016/j.compositesb.2015.08.081

    Article  Google Scholar 

  30. Ke LL, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech Adv Mater Struct 20:28–37. https://doi.org/10.1080/15376494.2011.581412

    Article  Google Scholar 

  31. Safaei B, Moradi-Dastjerdi R, Qin Z, Chu F (2019) Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads. Compos Part B Eng 161:44–54. https://doi.org/10.1016/j.compositesb.2018.10.049

    Article  Google Scholar 

  32. Yang Z, Feng C, Yang J, Wang Y, Lv J, Liu A et al (2020) Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aerosp Sci Technol 107:106326. https://doi.org/10.1016/j.ast.2020.106326

    Article  Google Scholar 

  33. Yang Z, Zhao S, Yang J, Lv J, Liu A, Fu J (2020) In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1716420

    Article  Google Scholar 

  34. Yang Z, Tam M, Zhang Y, Kitipornchai S, Lv J, Yang J (2020) Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment. Int J Struct Stab Dyn. https://doi.org/10.1142/s0219455420430051

    Article  MathSciNet  Google Scholar 

  35. Bisheh H, Rabczuk T, Wu N (2020) Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Compos Part B Eng 187:107739. https://doi.org/10.1016/j.compositesb.2019.107739

    Article  Google Scholar 

  36. Shenas AG, Malekzadeh P, Ziaee S (2019) Vibration of triangular functionally graded carbon nanotubes reinforced composite plates with elastically restrained edges in thermal environment. Iran J Sci Technol - Trans Mech Eng 43:653–678. https://doi.org/10.1007/s40997-018-0186-5

    Article  Google Scholar 

  37. Zhong R, Wang Q, Tang J, Shuai C, Liang Q (2018) Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports. Curved Layer Struct 5:10–34. https://doi.org/10.1515/cls-2018-0002

    Article  Google Scholar 

  38. Li H, Wang Z, Lv H, Zhou Z, Han Q, Liu J et al (2020) Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment. Thin-Walled Struct 157:107000. https://doi.org/10.1016/j.tws.2020.107000

    Article  Google Scholar 

  39. Malekzadeh P, Dehbozorgi M, Monajjemzadeh SM (2015) Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load. Sci Eng Compos Mater 22:37–55. https://doi.org/10.1515/secm-2013-0142

    Article  Google Scholar 

  40. Lin F, Xiang Y (2014) Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl Math Model 38:3741–3754. https://doi.org/10.1016/j.apm.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang LW, Pan ZZ, Chen X (2020) Vibration characteristics of matrix cracked pretwisted hybrid composite blades containing CNTRC layers. J Sound Vib 473:115242. https://doi.org/10.1016/j.jsv.2020.115242

    Article  Google Scholar 

  42. Wang Q, Cui X, Qin B, Liang Q (2017) Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions. Compos Struct 182:364–379. https://doi.org/10.1016/j.compstruct.2017.09.043

    Article  Google Scholar 

  43. Wang YQ, Wan YH, Zhang YF (2017) Vibrations of longitudinally traveling functionally graded material plates with porosities. Eur J Mech A/Solids 66:55–68. https://doi.org/10.1016/j.euromechsol.2017.06.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang YQ, Zu JW (2017) Large-amplitude vibration of sigmoid functionally graded thin plates with porosities. Thin-Walled Struct 119:911–924. https://doi.org/10.1016/j.tws.2017.08.012

    Article  Google Scholar 

  45. Wang YQ, Yang Z (2017) Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance. Nonlinear Dyn 90:1461–1480. https://doi.org/10.1007/s11071-017-3739-z

    Article  Google Scholar 

  46. Moradi-Dastjerdi R, Radhi A, Behdinan K (2020) Damped dynamic behavior of an advanced piezoelectric sandwich plate. Compos Struct 243:112243. https://doi.org/10.1016/j.compstruct.2020.112243

    Article  Google Scholar 

  47. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng Struct 222:111141. https://doi.org/10.1016/j.engstruct.2020.111141

    Article  Google Scholar 

  48. Jankowski P, Żur KK, Kim J, Reddy JN (2020) On the bifurcation buckling and vibration of porous nanobeams. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112632

    Article  Google Scholar 

  49. Gong J, Xuan L, Ying B, Wang H (2019) Thermoelastic analysis of functionally graded porous materials with temperature-dependent properties by a staggered finite volume method. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111071

    Article  Google Scholar 

  50. Kant Susheel C, Sharma A (2021) A numerical study to investigate the active vibration attenuation of functionally graded carbon nano-tube reinforced composite shell. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.707

    Article  Google Scholar 

  51. Jang D, Farooq SZ, Yoon HN, Khalid HR (2021) Design of a highly flexible and sensitive multi-functional polymeric sensor incorporating CNTs and carbonyl iron powder. Compos Sci Technol 207:108725. https://doi.org/10.1016/j.compscitech.2021.108725

    Article  Google Scholar 

  52. Karamanli A, Aydogdu M (2021) Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. Compos Struct 262:113639. https://doi.org/10.1016/j.compstruct.2021.113639

    Article  Google Scholar 

  53. Thirugnanasambantham KG, Sankaramoorthy T, Vaysakh M, Nadish SY, NileshSabarinath D (2021) A inclusive review: fatigue behaviour and its failure mechanisms of aluminium - carbon nanotubes (CNT) composites: part 3. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.344

    Article  Google Scholar 

  54. Duc ND, Minh PP (2021) Free vibration analysis of cracked FG CNTRC plates using phase field theory. Aerosp Sci Technol 112:106654. https://doi.org/10.1016/j.ast.2021.106654

    Article  Google Scholar 

  55. Sofiyev AH, Kuruoglu N (2021) Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation. Def Technol. https://doi.org/10.1016/j.dt.2020.12.007

    Article  Google Scholar 

  56. Safaei B, Davodian E, Fattahi AM, Mohammed A (2021) Calcium carbonate nanoparticles effects on cement plast properties. Microsyst Technol. https://doi.org/10.1007/s00542-020-05136-6

    Article  Google Scholar 

  57. Fan L, Sahmani S, Babak S (2021) Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations. Eng Comput 37:1635–1655. https://doi.org/10.1007/s00366-020-01182-w

    Article  Google Scholar 

  58. Yang X, Sahmani S, Babak S (2020) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  59. Khan T, Zhang N, Akram A. State of the art review of functionally graded materials. In: 2019 2nd International conference on computing, mathematics and engineering technologies ICoMET 2019 2019. https://doi.org/10.1109/ICOMET.2019.8673489.

  60. Behdinan K, Moradi-Dastjerdi R, Safaei B, Qin Z, Chu F, Hui D (2020) Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol Rev 9:41–52. https://doi.org/10.1515/ntrev-2020-0004

    Article  Google Scholar 

  61. Shen HS, Wang H, Yang DQ (2017) Vibration of thermally postbuckled sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations. Int J Mech Sci 124–125:253–262. https://doi.org/10.1016/j.ijmecsci.2017.03.015

    Article  Google Scholar 

  62. Mirzaei M (2019) Vibrations of FG-CNT reinforced composite cylindrical panels with cutout. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1705165

    Article  Google Scholar 

  63. Kiani Y, Dimitri R, Tornabene F (2018) Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Compos Part B Eng 147:169–177. https://doi.org/10.1016/j.compositesb.2018.04.028

    Article  Google Scholar 

  64. Asadi H, Souri M, Wang Q (2017) A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments. Compos Struct 171:113–125. https://doi.org/10.1016/j.compstruct.2017.02.003

    Article  Google Scholar 

  65. Heshmati M, Yas MH, Daneshmand F (2015) A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Compos Struct 125:434–448. https://doi.org/10.1016/j.compstruct.2015.02.033

    Article  Google Scholar 

  66. Arefi M, Mohammadi M, Tabatabaeian A, Rabczuk T (2020) Free vibration analysis of FG-CNTRC cylindrical pressure vessels resting on Pasternak foundation with various boundary conditions. Comput Mater Contin 62:1001–1023. https://doi.org/10.32604/cmc.2020.08052

    Article  Google Scholar 

  67. Moradi-Dastjerdi R, Foroutan M, Pourasghar A (2013) Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. Mater Des 44:256–266. https://doi.org/10.1016/j.matdes.2012.07.069

    Article  MATH  Google Scholar 

  68. Shi Z, Yao X, Pang F, Wang Q (2017) A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Compos Struct 182:420–434. https://doi.org/10.1016/j.compstruct.2017.09.045

    Article  Google Scholar 

  69. Zhang LW, Lei ZX, Liew KM (2015) Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos Part B Eng 75:36–46. https://doi.org/10.1016/j.compositesb.2015.01.033

    Article  MATH  Google Scholar 

  70. Bhagat V, Jeyaraj P, Murigendrappa SM (2018) Buckling and free vibration behavior of a temperature dependent FG-CNTRC cylindrical panel under thermal load. Mater Today Proc 5:23682–23691. https://doi.org/10.1016/j.matpr.2018.10.158

    Article  Google Scholar 

  71. Shahriari B, Karamooz Ravari MR, Zeighampour H (2015) Vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates using Mindlin’s strain gradient theory. Compos Struct 134:1036–1043. https://doi.org/10.1016/j.compstruct.2015.08.118

    Article  Google Scholar 

  72. Zhang LW, Cui WC, Liew KM (2015) Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int J Mech Sci 103:9–21. https://doi.org/10.1016/j.ijmecsci.2015.08.021

    Article  Google Scholar 

  73. Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 108–109:14–22. https://doi.org/10.1016/j.ijmecsci.2016.01.025

    Article  Google Scholar 

  74. Barati MR, Zenkour AM (2019) Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech Adv Mater Struct 26:1580–1588. https://doi.org/10.1080/15376494.2018.1444235

    Article  Google Scholar 

  75. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M et al (2019) Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci 152:346–362. https://doi.org/10.1016/j.ijmecsci.2019.01.004

    Article  Google Scholar 

  76. Barati MR, Zenkour A (2017) A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate. Compos Struct 168:885–892. https://doi.org/10.1016/J.COMPSTRUCT.2017.02.090

    Article  Google Scholar 

  77. Zenkour AM (2018) A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct 201:38–48. https://doi.org/10.1016/J.COMPSTRUCT.2018.05.147

    Article  Google Scholar 

  78. Saidi AR, Bahaadini R, Majidi-Mozafari K (2019) On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Compos Part B Eng 164:778–799. https://doi.org/10.1016/j.compositesb.2019.01.074

    Article  Google Scholar 

  79. Chen D, Zheng S, Wang Y, Yang L, Li Z (2020) Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur J Mech A/Solids 84:104083. https://doi.org/10.1016/j.euromechsol.2020.104083

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhao J, Gao Z, Li H, Guan J, Han Q, Wang Q (2021) A unified modeling method for dynamic analysis of CFRC-PGPC circular arche with general boundary conditions in hygrothermal environment. Compos Struct 255:112884. https://doi.org/10.1016/j.compstruct.2020.112884

    Article  Google Scholar 

  81. Moradi-Dastjerdi R, Behdinan K (2021) Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerosp Sci Technol 110:106476. https://doi.org/10.1016/j.ast.2020.106476

    Article  Google Scholar 

  82. Xie B, Sahmani S, Babak S, Bin X (2020) Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  83. Fan F, Safaei B, Sahmani S (2021) Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis. Thin-Walled Struct 159:107231. https://doi.org/10.1016/j.tws.2020.107231

    Article  Google Scholar 

  84. Fan F, Cai X, Sahmani S, Safaei B (2021) Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos Struct 262:113604. https://doi.org/10.1016/j.compstruct.2021.113604

    Article  Google Scholar 

  85. Nguyen QH, Nguyen LB, Nguyen HB, Nguyen-Xuan H (2020) A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Compos Struct 245:112321. https://doi.org/10.1016/j.compstruct.2020.112321

    Article  Google Scholar 

  86. Heshmati M, Daneshmand F, Amini Y, Adamowski J (2019) Vibration behavior of poroelastic thick curved panels with graded open-cell and saturated closed-cell porosities. Eur J Mech A/Solids 77:103817. https://doi.org/10.1016/j.euromechsol.2019.103817

    Article  MathSciNet  MATH  Google Scholar 

  87. Heidari Y, Arefi M, Irani RM (2021) Effect of distributed piezoelectric segments on the buckling load of FG cylindrical micro/nano shell. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-01055-7

    Article  Google Scholar 

  88. Zhou X, Wang Y, Zhang W (2021) Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow. Acta Astronaut 183:89–100. https://doi.org/10.1016/j.actaastro.2021.03.003

    Article  Google Scholar 

  89. Reza Barati M, Zenkour AM (2017) Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos Struct 181:194–202. https://doi.org/10.1016/J.COMPSTRUCT.2017.08.082

    Article  Google Scholar 

  90. Anamagh MR, Bediz B (2020) Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112765

    Article  Google Scholar 

  91. Heshmati M, Jalali SK (2019) Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates. Eur J Mech A/Solids 74:417–430. https://doi.org/10.1016/j.euromechsol.2018.12.009

    Article  MathSciNet  MATH  Google Scholar 

  92. Huang XL, Dong L, Wei GZ, Zhong DY (2019) Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations. Compos Struct 228:111326. https://doi.org/10.1016/j.compstruct.2019.111326

    Article  Google Scholar 

  93. Demirhan PA, Taskin V (2019) Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Compos Part B Eng 160:661–676. https://doi.org/10.1016/j.compositesb.2018.12.020

    Article  Google Scholar 

  94. Kiran MC, Kattimani SC, Vinyas M (2018) Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos Struct 191:36–77. https://doi.org/10.1016/j.compstruct.2018.02.023

    Article  Google Scholar 

  95. Zenkour AM, Aljadani MH (2019) Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur J Mech A/Solids 78:103835. https://doi.org/10.1016/j.euromechsol.2019.103835

    Article  MathSciNet  MATH  Google Scholar 

  96. Cuong-Le T, Nguyen KD, Nguyen-Trong N, Khatir S, Nguyen-Xuan H, Abdel-Wahab M (2020) A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113216

    Article  Google Scholar 

  97. Fan F, Xu Y, Sahmani S, Safaei B (2020) Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl Mech Eng 372:113400. https://doi.org/10.1016/j.cma.2020.113400

    Article  MathSciNet  MATH  Google Scholar 

  98. Wang YQ (2018) Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut 143:263–271. https://doi.org/10.1016/j.actaastro.2017.12.004

    Article  Google Scholar 

  99. Trinh MC, Nguyen DD, Kim SE (2019) Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerosp Sci Technol 87:119–132. https://doi.org/10.1016/j.ast.2019.02.010

    Article  Google Scholar 

  100. Jalali SK, Heshmati M (2020) Vibration analysis of tapered circular poroelastic plates with radially graded porosity using pseudo-spectral method. Mech Mater 140:103240. https://doi.org/10.1016/j.mechmat.2019.103240

    Article  Google Scholar 

  101. Safaei B, Moradi-Dastjerdi R, Behdinan K, Qin Z, Chu F (2019) Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers. Compos Struct 226:111209. https://doi.org/10.1016/j.compstruct.2019.111209

    Article  Google Scholar 

  102. Arshid E, Khorshidvand AR (2018) Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct 125:220–233. https://doi.org/10.1016/j.tws.2018.01.007

    Article  Google Scholar 

  103. Fan F, Xu Y, Sahmani S, Safaei B (2020) Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl. https://doi.org/10.1016/j.cma.2020.113400

    Article  MATH  Google Scholar 

  104. Tran TT, Pham QH, Nguyen-Thoi T (2020) Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Def Technol. https://doi.org/10.1016/j.dt.2020.06.001

    Article  Google Scholar 

  105. Zhu B, Xu Q, Li M, Li Y (2020) Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112672

    Article  Google Scholar 

  106. Thang PT, Nguyen-Thoi T, Lee D, Kang J, Lee J (2018) Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions. Aerosp Sci Technol 79:278–287. https://doi.org/10.1016/j.ast.2018.06.010

    Article  Google Scholar 

  107. Kanu NJ, Vates UK, Singh GK, Chavan S (2019) Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: a state-of-the-art review including smart FGMS. Part Sci Technol 37:579–604. https://doi.org/10.1080/02726351.2017.1410265

    Article  Google Scholar 

  108. Sinha GP, Kumar B (2020) Review on vibration analysis of functionally graded material structural components with cracks. J Vib Eng Technol. https://doi.org/10.1007/s42417-020-00208-3

    Article  Google Scholar 

  109. Punera D, Kant T (2019) A critical review of stress and vibration analyses of functionally graded shell structures. Compos Struct 210:787–809. https://doi.org/10.1016/j.compstruct.2018.11.084

    Article  Google Scholar 

  110. Van Tol HHM (1991) © 19 9 1 Nature publishing group 그라첼꺼. Nature 354:56–58

    Article  Google Scholar 

  111. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  112. Yan JW, Liew KM, He LH (2013) Free vibration analysis of single-walled carbon nanotubes using a higher-order gradient theory. J Sound Vib 332:3740–3755. https://doi.org/10.1016/j.jsv.2013.02.004

    Article  Google Scholar 

  113. Rafique I, Kausar A, Anwar Z, Muhammad B (2016) Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: a review. Polym - Plast Technol Eng 55:312–333. https://doi.org/10.1080/03602559.2015.1070874

    Article  Google Scholar 

  114. Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186–1197. https://doi.org/10.1016/j.jiec.2013.09.001

    Article  Google Scholar 

  115. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube - a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int 1:100003. https://doi.org/10.1016/j.sintl.2020.100003

    Article  Google Scholar 

  116. Mohideen MM, Liu Y, Ramakrishna S (2020) Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Appl Energy 257:114027. https://doi.org/10.1016/j.apenergy.2019.114027

    Article  Google Scholar 

  117. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5:1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  Google Scholar 

  118. Basheer BV, George JJ, Siengchin S, Parameswaranpillai J (2020) Polymer grafted carbon nanotubes—Synthesis, properties, and applications: a review. Nano-Structures Nano-Objects 22:100429. https://doi.org/10.1016/j.nanoso.2020.100429

    Article  Google Scholar 

  119. Poudel YR, Li W (2018) Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today Phys 7:7–34. https://doi.org/10.1016/j.mtphys.2018.10.002

    Article  Google Scholar 

  120. Verma B, Sewani H, Balomajumder C (2020) Synthesis of carbon nanotubes via chemical vapor deposition: an advanced application in the management of electroplating effluent. Environ Sci Pollut Res 27:14007–14018. https://doi.org/10.1007/s11356-020-08002-0

    Article  Google Scholar 

  121. Mir M, Hosseini A, Majzoobi GH (2008) A numerical study of vibrational properties of single-walled carbon nanotubes. Comput Mater Sci 43:540–548. https://doi.org/10.1016/j.commatsci.2007.12.024

    Article  Google Scholar 

  122. Ogasawara T, Moon SY, Inoue Y, Shimamura Y (2011) Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol 71:1826–1833. https://doi.org/10.1016/j.compscitech.2011.08.009

    Article  Google Scholar 

  123. Kashyap KT, Koppad PG, Puneeth KB, Aniruddha Ram HR, Mallikarjuna HM (2011) Elastic modulus of multiwalled carbon nanotubes reinforced aluminium matrix nanocomposite - A theoretical approach. Comput Mater Sci 50:2493–2495. https://doi.org/10.1016/j.commatsci.2011.03.032

    Article  Google Scholar 

  124. Zhong J, Isayev AI (2016) Ultrasonically assisted compounding of CNT with polypropylenes of different molecular weights. Polymer (Guildf) 107:130–146. https://doi.org/10.1016/J.POLYMER.2016.11.006

    Article  Google Scholar 

  125. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652. https://doi.org/10.1016/J.CARBON.2006.02.038

    Article  Google Scholar 

  126. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(Phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113

    Google Scholar 

  127. Zhang D, Yang H, Pan J, Lewis B, Zhou W, Cai K et al (2020) Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Compos Part B Eng 182:107646. https://doi.org/10.1016/J.COMPOSITESB.2019.107646

    Article  Google Scholar 

  128. Zhang D, Villarreal MG, Cabrera E, Benatar A, James Lee L, Castro JM (2019) Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite. Compos Part B Eng 159:327–335. https://doi.org/10.1016/J.COMPOSITESB.2018.10.012

    Article  Google Scholar 

  129. Advanced Sample Processing with SFX Sonifiers | Emerson CN n.d. https://www.emerson.com/en-us/automation/welding-assembly-cleaning/laboratory-equipment/sonifiers (accessed 14 September 2021).

  130. Jayababu N, Jo S, Kim Y, Kim D (2021) Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors. Ultrason Sonochem 71:105374. https://doi.org/10.1016/J.ULTSONCH.2020.105374

    Article  Google Scholar 

  131. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon N Y 44:3022–3029. https://doi.org/10.1016/J.CARBON.2006.05.014

    Article  Google Scholar 

  132. Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371. https://doi.org/10.1016/J.COMPSCITECH.2004.04.002

    Article  Google Scholar 

  133. He Y, Zhang J, Yao L, Tang J, Che B, Ju S et al (2021) A multi-layer resin film infusion process to control CNTs distribution and alignment for improving CFRP interlaminar fracture toughness. Compos Struct 260:113510. https://doi.org/10.1016/J.COMPSTRUCT.2020.113510

    Article  Google Scholar 

  134. Yang B, Ding X, Zhang M, Wang L (2021) Scalable electric heating paper based on CNT/Aramid fiber with superior mechanical and electric heating properties. Compos Part B Eng 224:109242. https://doi.org/10.1016/J.COMPOSITESB.2021.109242

    Article  Google Scholar 

  135. Liu Y, Zhang X, Deng J, Liu Y (2021) A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides. Chemosphere 277:130305. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130305

    Article  Google Scholar 

  136. Fouda AN, Duraia ESM, Almaqwashi AA (2021) Facile and scalable green synthesis of N-doped graphene/CNTs nanocomposites via ball milling. Ain Shams Eng J 12:1017–1024. https://doi.org/10.1016/J.ASEJ.2020.04.011

    Article  Google Scholar 

  137. Jargalsaikhan B, Bor A, Lee J, Choi H (2020) Al/CNT nanocomposite fabrication on the different property of raw material using a planetary ball mill. Adv Powder Technol 31:1957–1962. https://doi.org/10.1016/J.APT.2020.02.031

    Article  Google Scholar 

  138. Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J et al (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos Part A Appl Sci Manuf 96:57–66. https://doi.org/10.1016/J.COMPOSITESA.2017.02.017

    Article  Google Scholar 

  139. Liu L, Li S, Zhang X, Pan D, Gao L, Chen B et al (2021) Syntheses, microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC-cladded CNTs. Mater Sci Eng A 824:141784. https://doi.org/10.1016/J.MSEA.2021.141784

    Article  Google Scholar 

  140. Omidi M, Khodabandeh A, Nategh S, Khakbiz M (2018) Microstructural and tribological properties of nanostructured Al6061-CNT produced by mechanical milling and extrusion. Adv Powder Technol 29:543–554. https://doi.org/10.1016/J.APT.2017.12.026

    Article  Google Scholar 

  141. Liang J, Li H, Qi L, Tian W, Li X, Chao X et al (2017) Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J Alloys Compd 728:282–288. https://doi.org/10.1016/J.JALLCOM.2017.09.009

    Article  Google Scholar 

  142. Alladi A, Aluri M, Maddela N, Abbadi CR (2021) Recent progress of CNTs reinforcement with metal matrix composites using friction stir processing. Mater Today Proc 44:1731–1738. https://doi.org/10.1016/J.MATPR.2020.11.897

    Article  Google Scholar 

  143. Li X, Zhou C, Overman N, Ma X, Canfield N, Kappagantula K et al (2021) Copper carbon composite wire with a uniform carbon dispersion made by friction extrusion. J Manuf Process 65:397–406. https://doi.org/10.1016/J.JMAPRO.2021.03.055

    Article  Google Scholar 

  144. Wang JF, Cao SH, Zhang W (2021) Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. Eur J Mech A/Solids 85:104105. https://doi.org/10.1016/j.euromechsol.2020.104105

    Article  MathSciNet  MATH  Google Scholar 

  145. Wang ZX, Shen HS (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos Part B Eng 43:411–421. https://doi.org/10.1016/j.compositesb.2011.04.040

    Article  Google Scholar 

  146. Fan J, Huang J, Ding J, Zhang J (2017) Free vibration of functionally graded carbon nanotube-reinforced conical panels integrated with piezoelectric layers subjected to elastically restrained boundary conditions. Adv Mech Eng 9:1–17. https://doi.org/10.1177/1687814017711811

    Article  Google Scholar 

  147. Shahraki H, Tajmir Riahi H, Izadinia M, Talaeitaba SB (2020) Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory. JVC/J Vib Control 26:277–305. https://doi.org/10.1177/1077546319878976

    Article  MathSciNet  Google Scholar 

  148. Bie RJ, Ahmed M, Daarabi M (2019) Thermal effects on the mechanical analysis of temperature-dependent FG-CNTRC annular plates. Mater Res Express. https://doi.org/10.1088/2053-1591/aaf92c

    Article  Google Scholar 

  149. Shahraki H, Riahi HT, Izadinia M, Talaeitaba SB (2019) Mindlin’s strain gradient theory for vibration analysis of FG-CNT-reinforced composite nanoplates resting on Kerr foundation in thermal environment. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719843175

    Article  Google Scholar 

  150. Kiani Y (2017) Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load. Thin-Walled Struct 111:48–57. https://doi.org/10.1016/j.tws.2016.11.011

    Article  Google Scholar 

  151. Zhang LW, Liew KM (2015) Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates. Comput Methods Appl Mech Eng 295:219–239. https://doi.org/10.1016/j.cma.2015.07.006

    Article  MathSciNet  MATH  Google Scholar 

  152. Liew KM, Lei ZX, Yu JL, Zhang LW (2014) Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput Methods Appl Mech Eng 268:1–17. https://doi.org/10.1016/j.cma.2013.09.001

    Article  MathSciNet  MATH  Google Scholar 

  153. Foroutan K, Ahmadi H, Carrera E (2019) Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment. Compos Struct 227:111310. https://doi.org/10.1016/j.compstruct.2019.111310

    Article  Google Scholar 

  154. Foroutan K, Carrera E, Ahmadi H (2021) Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations. Eur J Mech A/Solids 85:104107. https://doi.org/10.1016/j.euromechsol.2020.104107

    Article  MathSciNet  MATH  Google Scholar 

  155. Jooybar N, Malekzadeh P, Fiouz A (2016) Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment. Compos Part B Eng 106:242–261. https://doi.org/10.1016/j.compositesb.2016.09.030

    Article  Google Scholar 

  156. Mehar K, Panda SK, Bui TQ, Mahapatra TR (2017) Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM. J Therm Stress 40:899–916. https://doi.org/10.1080/01495739.2017.1318689

    Article  Google Scholar 

  157. Thai CH, Tran TD, Phung-Van P (2020) A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Eng Anal Bound Elem 115:52–63. https://doi.org/10.1016/j.enganabound.2020.02.008

    Article  MathSciNet  MATH  Google Scholar 

  158. Garg A, Chalak HD, Belarbi MO, Zenkour AM, Sahoo R (2021) Estimation of carbon nanotubes and their applications as reinforcing composite materials–An engineering review. Compos Struct 272:114234. https://doi.org/10.1016/J.COMPSTRUCT.2021.114234

    Article  Google Scholar 

  159. Moradi-Dastjerdi R, Behdinan K (2021) Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl Math Model 96:66–79. https://doi.org/10.1016/J.APM.2021.03.013

    Article  MathSciNet  MATH  Google Scholar 

  160. Yang Z, Lu H, Sahmani S, Safaei B (2021) Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng 21:1–19. https://doi.org/10.1007/S43452-021-00264-W

    Article  Google Scholar 

  161. Yang Z, Liu A, Pi YL, Fu J, Gao Z (2020) Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. J Sound Vib 487:115622. https://doi.org/10.1016/J.JSV.2020.115622

    Article  Google Scholar 

  162. Meschino M, Wang L, Xu H, Moradi-Dastjerdi R, Behdinan K (2021) Low-frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires. Polym Compos. https://doi.org/10.1002/PC.26169

    Article  Google Scholar 

  163. Yuan Y, Zhao X, Zhao Y, Sahmani S, Safaei B (2021) Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 159:107249. https://doi.org/10.1016/J.TWS.2020.107249

    Article  Google Scholar 

  164. Shell TEI (1888) The small free vibrations and deformation of a thin elastic shell. Proc R Soc London 43:352–353. https://doi.org/10.1098/rspl.1887.0146

    Article  Google Scholar 

  165. Carrera E (2003) Historical review of Zig-Zag theories for multilayered plates and shells. Appl Mech Rev 56:287–308. https://doi.org/10.1115/1.1557614

    Article  Google Scholar 

  166. Garg A, Chalak HD (2019) A review on analysis of laminated composite and sandwich structures under hygrothermal conditions. Thin-Walled Struct 142:205–226. https://doi.org/10.1016/J.TWS.2019.05.005

    Article  Google Scholar 

  167. Garg A, Belarbi MO, Chalak HD, Chakrabarti A (2021) A review of the analysis of sandwich FGM structures. Compos Struct 258:113427. https://doi.org/10.1016/J.COMPSTRUCT.2020.113427

    Article  Google Scholar 

  168. Belarbi M-O, Zenkour AM, Tati A, Salami SJ, Khechai A, Houari M-S-A (2021) An efficient eight-node quadrilateral element for free vibration analysis of multilayer sandwich plates. Int J Numer Methods Eng 122:2360–2387

    Article  MathSciNet  Google Scholar 

  169. Belarbi M-O, Tati A, Ounis H, Khechai A (2017) On the free vibration analysis of laminated composite and sandwich plates: a layerwise finite element formulation. Lat Am J Solids Struct 14:2265–2290. https://doi.org/10.1590/1679-78253222

    Article  Google Scholar 

  170. Mohseni A, Shakouri M (2019) Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation. Proc Inst Mech Eng Part L J Mater Des Appl 233:2478–2489. https://doi.org/10.1177/1464420719866222

    Article  Google Scholar 

  171. Ahmadi M, Talebitooti M, Talebitooti R (2020) Analytical investigation on sound transmission loss of functionally graded nanocomposite cylindrical shells reinforced by carbon nanotubes. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1805333

    Article  Google Scholar 

  172. Alibeigloo A, Emtehani A (2015) Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica 50:61–76. https://doi.org/10.1007/s11012-014-0050-7

    Article  MathSciNet  MATH  Google Scholar 

  173. Mehar K, Panda SK (2016) Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field. Compos Struct 143:336–346. https://doi.org/10.1016/j.compstruct.2016.02.038

    Article  Google Scholar 

  174. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683. https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  175. Zhang LW, Zhang Y, Zou GL, Liew KM (2016) Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos Struct 149:247–260. https://doi.org/10.1016/j.compstruct.2016.04.019

    Article  Google Scholar 

  176. Zhang LW, Lei ZX, Liew KM (2015) Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos Struct 122:172–183. https://doi.org/10.1016/j.compstruct.2014.11.070

    Article  Google Scholar 

  177. Zhang LW, Lei ZX, Liew KM (2015) Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos Struct 120:189–199. https://doi.org/10.1016/j.compstruct.2014.10.009

    Article  Google Scholar 

  178. Malekzadeh P, Heydarpour Y (2015) Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50:143–167. https://doi.org/10.1007/s11012-014-0061-4

    Article  MathSciNet  MATH  Google Scholar 

  179. Dinh DN, Nguyen PD (2017) The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations. Materials (Basel). https://doi.org/10.3390/ma10101194

    Article  Google Scholar 

  180. Civalek Ö (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos Part B Eng 111:45–59. https://doi.org/10.1016/j.compositesb.2016.11.030

    Article  Google Scholar 

  181. Fazzolari FA (2018) Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates. Compos Struct 196:199–214. https://doi.org/10.1016/j.compstruct.2018.04.026

    Article  Google Scholar 

  182. Gholamia R, Ansari R (2019) On the vibration of postbuckled functionally graded-carbon nanotube reinforced composite annular plates. Sci Iran 26:3857–3874. https://doi.org/10.24200/sci.2019.51145.2029

    Article  Google Scholar 

  183. Frikha A, Zghal S, Dammak F (2018) Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp Sci Technol 78:438–451. https://doi.org/10.1016/j.ast.2018.04.048

    Article  MATH  Google Scholar 

  184. Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct 194:49–67. https://doi.org/10.1016/j.compstruct.2018.03.104

    Article  Google Scholar 

  185. Thomas B, Roy T (2016) Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. Acta Mech 227:581–599. https://doi.org/10.1007/s00707-015-1479-z

    Article  MathSciNet  MATH  Google Scholar 

  186. Zhang LW, Lei ZX, Liew KM (2015) Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. Appl Math Comput 256:488–504. https://doi.org/10.1016/j.amc.2015.01.066

    Article  MathSciNet  MATH  Google Scholar 

  187. Sahmani S, Safaei B (2021) Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Model 89:1792–1813. https://doi.org/10.1016/j.apm.2020.08.039

    Article  MathSciNet  MATH  Google Scholar 

  188. Akgün G, Kurtaran H, Kalbaran Ö (2020) Non-linear transient response of porous functionally graded truncated conical panels using GDQ method. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107276

    Article  Google Scholar 

  189. Qin Z, Yang Z, Zu J, Chu F (2018) Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int J Mech Sci 142–143:127–139. https://doi.org/10.1016/j.ijmecsci.2018.04.044

    Article  Google Scholar 

  190. Qin Z, Pang X, Safaei B, Chu F (2019) Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct 220:847–860. https://doi.org/10.1016/j.compstruct.2019.04.046

    Article  Google Scholar 

  191. Avramov KV, Chernobryvko M, Uspensky B, Seitkazenova KK, Myrzaliyev D (2019) Self-sustained vibrations of functionally graded carbon nanotubes-reinforced composite cylindrical shells in supersonic flow. Nonlinear Dyn 98:1853–1876. https://doi.org/10.1007/s11071-019-05292-z

    Article  Google Scholar 

  192. Keleshteri MM, Jelovica J (2020) Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112028

    Article  Google Scholar 

  193. Setoodeh AR, Shojaee M, Malekzadeh P (2018) Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers. Comput Methods Appl Mech Eng 335:510–537. https://doi.org/10.1016/j.cma.2018.02.022

    Article  MathSciNet  MATH  Google Scholar 

  194. Pouresmaeeli S, Fazelzadeh SA (2016) Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech 227:2765–2794. https://doi.org/10.1007/s00707-016-1647-9

    Article  MathSciNet  Google Scholar 

  195. Xie F, Tang J, Wang A, Shuai C, Wang Q (2018) Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels with general elastic supports. Curved Layer Struct 5:95–115. https://doi.org/10.1515/cls-2018-0008

    Article  Google Scholar 

  196. Khoa ND, Anh VM, Duc ND (2019) Nonlinear dynamic response and vibration of functionally graded nanocomposite cylindrical panel reinforced by carbon nanotubes in thermal environment. J Sandw Struct Mater. https://doi.org/10.1177/1099636219847191

    Article  Google Scholar 

  197. Shen HS, Xiang Y (2014) Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos Struct 111:291–300. https://doi.org/10.1016/j.compstruct.2014.01.010

    Article  Google Scholar 

  198. Zhao J, Choe K, Shuai C, Wang A, Wang Q (2019) Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos Part B Eng 160:225–240. https://doi.org/10.1016/j.compositesb.2018.09.105

    Article  Google Scholar 

  199. Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct 111:205–212. https://doi.org/10.1016/j.compstruct.2013.12.035

    Article  Google Scholar 

  200. Alibeigloo A (2014) Free vibration analysis of functionally graded carbon nanotube-Reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity. Eur J Mech A/Solids 44:104–115. https://doi.org/10.1016/j.euromechsol.2013.10.002

    Article  MathSciNet  MATH  Google Scholar 

  201. Shi Z, Yao X, Pang F, Wang Q (2017) An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-12596-w

    Article  Google Scholar 

  202. Nguyen TN, Thai CH, Nguyen-Xuan H, Lee J (2018) NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells. Compos Struct 203:349–360. https://doi.org/10.1016/j.compstruct.2018.06.017

    Article  MATH  Google Scholar 

  203. Lei ZX, Liew KM, Yu JL (2013) Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct 106:128–138. https://doi.org/10.1016/j.compstruct.2013.06.003

    Article  Google Scholar 

  204. Ye T, Jin G, Chen Y, Shi S (2014) A unified formulation for vibration analysis of open shells with arbitrary boundary conditions. Int J Mech Sci 81:42–59. https://doi.org/10.1016/j.ijmecsci.2014.02.002

    Article  Google Scholar 

  205. Mirzaei M, Kiani Y (2016) Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos Struct 142:45–56. https://doi.org/10.1016/j.compstruct.2015.12.071

    Article  Google Scholar 

  206. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460. https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  207. Vo-Duy T, Ho-Huu V, Nguyen-Thoi T (2019) Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method. Front Struct Civ Eng 13:324–336. https://doi.org/10.1007/s11709-018-0466-6

    Article  Google Scholar 

  208. Zhang LW, Lei ZX, Liew KM (2017) Free vibration analysis of FG-CNT reinforced composite straight-sided quadrilateral plates resting on elastic foundations using the IMLS-Ritz method. JVC/J Vib Control 23:1026–1043. https://doi.org/10.1177/1077546315587804

    Article  MathSciNet  Google Scholar 

  209. Park SJ, Seo MK (2011) Composite characterization. Interface Science and Technology (Vol. 18, pp. 631–738). Elsevier. https://doi.org/10.1016/B978-0-12-375049-5.00008-6.

  210. Toscano C, Meola C, Carlomagno GM (2013) Porosity distribution in composite structures with infrared thermography. J Compos 2013:1–8. https://doi.org/10.1155/2013/140127

    Article  Google Scholar 

  211. Hudson TB, Follis PJ, Pinakidis JJ, Sreekantamurthy T, Palmieri FL (2021) Porosity detection and localization during composite cure inside an autoclave using ultrasonic inspection. Compos Part A Appl Sci Manuf 147:106337. https://doi.org/10.1016/J.COMPOSITESA.2021.106337

    Article  Google Scholar 

  212. Naji MI, Hoa SV (2000) Curing of thick angle-bend thermoset composite part: curing process modification for uniform thickness and uniform fiber volume fraction distribution. J Compos Mater 34:1710–1755. https://doi.org/10.1106/F97F-U8RD-QYN8-Q8JU

    Article  Google Scholar 

  213. White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM (2012) The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater 8:61–71. https://doi.org/10.1016/J.ACTBIO.2011.07.032

    Article  Google Scholar 

  214. Mota AF, Loja MAR (2019) Mechanical behavior of porous functionally graded nanocomposite materials. C 5:34. https://doi.org/10.3390/c5020034

    Article  Google Scholar 

  215. Arefi M, Firouzeh S, Mohammad-Rezaei Bidgoli E, Civalek Ö (2020) Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos Struct 247:112391. https://doi.org/10.1016/j.compstruct.2020.112391

    Article  Google Scholar 

  216. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN et al (2012) A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos Struct 94:1814–1825. https://doi.org/10.1016/j.compstruct.2011.12.005

    Article  Google Scholar 

  217. Phung-Van P, Thai CH, Nguyen-Xuan H, Abdel-Wahab M (2019) An isogeometric approach of static and free vibration analyses for porous FG nanoplates. Eur J Mech A/Solids 78:103851. https://doi.org/10.1016/j.euromechsol.2019.103851

    Article  MathSciNet  MATH  Google Scholar 

  218. Li S, Zheng S, Chen D (2020) Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin-Walled Struct 156:106999. https://doi.org/10.1016/j.tws.2020.106999

    Article  Google Scholar 

  219. dos Reis MQ, Marques EAS, Carbas RJC, da Silva LFM (2020) Functionally graded adherends in adhesive joints: an overview. J Adv Join Process 2:100033. https://doi.org/10.1016/j.jajp.2020.100033

    Article  Google Scholar 

  220. Anamagh MR, Bediz B (2020) Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach. Compos Struct 253:112765. https://doi.org/10.1016/j.compstruct.2020.112765

    Article  Google Scholar 

  221. Yaghoobi H, Taheri F (2020) Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct 252:112700. https://doi.org/10.1016/j.compstruct.2020.112700

    Article  Google Scholar 

  222. Zenkour AM, Radwan AF (2021) A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-021-01238-w

    Article  Google Scholar 

  223. Remyamol T, Gopi R, Ajith MR, Pant B (2021) Porous silicon carbide structures with anisotropic open porosity for high- temperature cycling applications. J Eur Ceram Soc 41:1828–1833. https://doi.org/10.1016/j.jeurceramsoc.2020.10.060

    Article  Google Scholar 

  224. Abdul-Latif A, Menouer A, Baleh R, Deiab IM (2021) Plastic response of open cell aluminum foams of highly uniform architecture under different quasi-static combined biaxial compression-torsion loading paths. Mater Sci Eng B Solid-State Mater Adv Technol 266:115051. https://doi.org/10.1016/j.mseb.2021.115051

    Article  Google Scholar 

  225. Durif C, Wynn M, Balestrat M, Franchin G, Kim YW, Leriche A et al (2019) Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes. J Eur Ceram Soc 39:5114–5122. https://doi.org/10.1016/j.jeurceramsoc.2019.08.012

    Article  Google Scholar 

  226. Farías I, Olmos L, Jiménez O, Flores M, Braem A, Vleugels J (2019) Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering. Trans Nonferrous Met Soc China 29:1653–1664. https://doi.org/10.1016/S1003-6326(19)65072-7

    Article  Google Scholar 

  227. Barati MR, Zenkour AM (2017) Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos Struct 182:91–98. https://doi.org/10.1016/J.COMPSTRUCT.2017.09.008

    Article  Google Scholar 

  228. Barati MR, Zenkour AM (2016) Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J Vib Control. https://doi.org/10.1177/1077546316672788

    Article  Google Scholar 

  229. Wan T, Liu Y, Zhou C, Chen X, Li Y (2021) Fabrication, properties, and applications of open-cell aluminum foams: a review. J Mater Sci Technol 62:11–24. https://doi.org/10.1016/j.jmst.2020.05.039

    Article  Google Scholar 

  230. Yang H, Li Y, Yang Y, Chen D, Zhu Y (2020) Effective thermal conductivity of high porosity open-cell metal foams. Int J Heat Mass Transf 147:118974. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118974

    Article  Google Scholar 

  231. Yan S, Zhang F, Wang S, He P, Jia D, Yang J (2019) Crystallization behavior and mechanical properties of high open porosity dolomite hollow microspheres filled hybrid geopolymer foams. Cem Concr Compos 104:103376. https://doi.org/10.1016/j.cemconcomp.2019.103376

    Article  Google Scholar 

  232. Vega J, Scheerer H, Andersohn G, Oechsner M (2018) Evaluation of the open porosity of PVD coatings through electrochemical iron detection. Surf Coat Technol 350:453–461. https://doi.org/10.1016/j.surfcoat.2018.06.095

    Article  Google Scholar 

  233. Corasaniti S, De Luca E, Gori F (2019) Effect of structure, porosity, saturating fluid and solid material on the effective thermal conductivity of open-cells foams. Int J Heat Mass Transf 138:41–48. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.041

    Article  Google Scholar 

  234. Abhash A, Singh P, Muchhala D, Kumar R, Gupta GK, Mondal DP (2020) Research into the change of macrostructure, microstructure and compressive deformation response of Ti6Al2Co foam with sintering temperatures and space holder contents. Mater Lett 261:126997. https://doi.org/10.1016/j.matlet.2019.126997

    Article  Google Scholar 

  235. Sauceda S, Lascano S, Béjar L, Neves GO, Chicardi E, Salvo C et al (2020) Study of the effect of the floating die compaction on mechanical properties of titanium foams. Metals (Basel) 10:1–17. https://doi.org/10.3390/met10121621

    Article  Google Scholar 

  236. Carneiro VH, Rawson SD, Puga H, Withers PJ (2021) Macro-, meso- and microstructural characterization of metallic lattice structures manufactured by additive manufacturing assisted investment casting. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-84524-y

    Article  Google Scholar 

  237. Wan T, Liu Y, Zhou C, Ding X, Chen X, Li Y (2021) Fabrication of high-porosity open-cell aluminum foam via high-temperature deformation of CaCl2 space-holders. Mater Lett 284:129018. https://doi.org/10.1016/j.matlet.2020.129018

    Article  Google Scholar 

  238. Singh P, Shrivastava V, Srivastava SK, Singh IB, Agarwal P, Mondal DP (2021) Microstructural evolution, compressive deformation and corrosion behaviour of thermally oxidized porous Ti4Al4Co alloy made of mechanically alloyed powder. Mater Chem Phys 261:124191. https://doi.org/10.1016/j.matchemphys.2020.124191

    Article  Google Scholar 

  239. Gupta J, Ghosh S, Aravindan S (2021) Effect of Mo and space holder content on microstructure, mechanical and corrosion properties in Ti6AlxMo based alloy for bone implant. Mater Sci Eng C 123:111962. https://doi.org/10.1016/j.msec.2021.111962

    Article  Google Scholar 

  240. Fabrizio Q, Boschetto A, Rovatti L, Santo L (2011) Replication casting of open-cell AlSi7Mg0.3 foams. Mater Lett 65:2558–2561. https://doi.org/10.1016/j.matlet.2011.05.057

    Article  Google Scholar 

  241. Chen D, Kitipornchai S, Yang J (2018) Dynamic response and energy absorption of functionally graded porous structures. Mater Des 140:473–487. https://doi.org/10.1016/j.matdes.2017.12.019

    Article  Google Scholar 

  242. Chen M, Ye T, Zhang J, Jin G, Zhang Y, Xue Y et al (2020) Isogeometric three-dimensional vibration of variable thickness parallelogram plates with in-plane functionally graded porous materials. Int J Mech Sci 169:105304. https://doi.org/10.1016/j.ijmecsci.2019.105304

    Article  Google Scholar 

  243. Kiran MC, Kattimani SC (2018) Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study. Eur J Mech A/Solids 71:258–277. https://doi.org/10.1016/j.euromechsol.2018.04.006

    Article  MathSciNet  MATH  Google Scholar 

  244. Heidari Y, Irani Rahaghi M, Arefi M (2020) Free vibration analysis of a porous rotor integrated with regular patterns of circumferentially distributed functionally graded piezoelectric patches on inner and outer surfaces. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389X20948608

    Article  Google Scholar 

  245. Chen J, Xiao G, Duan G, Wu Y, Zhao X, Gong X (2020) Structural design of carbon dots/porous materials composites and their applications. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127743

    Article  Google Scholar 

  246. Beh CY, Cheng EM, Mohd Nasir NF, Mohd Tarmizi EZ, Eng SK, Abdul Majid MS et al (2020) Morphological and optical properties of porous hydroxyapatite/cornstarch (HAp/Cs) composites. J Mater Res Technol 9:14267–14282. https://doi.org/10.1016/j.jmrt.2020.10.012

    Article  Google Scholar 

  247. Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T (2020) Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 385:123963. https://doi.org/10.1016/j.cej.2019.123963

    Article  Google Scholar 

  248. Sun Y, Chu Y, Wu W, Xiao H (2021) Nanocellulose-based lightweight porous materials: a review. Carbohydr Polym 255:117489. https://doi.org/10.1016/j.carbpol.2020.117489

    Article  Google Scholar 

  249. Baux A, Couégnat G, Vignoles GL, Lasseux D, Kuhn A, Carucci C et al (2020) Digitization and image-based structure-properties relationship evaluation of a porous gold micro-electrode. Mater Des 193:108812. https://doi.org/10.1016/j.matdes.2020.108812

    Article  Google Scholar 

  250. Zhai Z, Ren B, Zheng Y, Xu Y, Wang S, Zhang L et al (2019) Nitrogen-containing carbon aerogels with high specific surface area for supercapacitors. ChemElectroChem 6:5993–6001. https://doi.org/10.1002/celc.201901951

    Article  Google Scholar 

  251. Luo X, Shen J, Ma Y, Liu L, Meng R, Yao J (2020) Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation. Carbohydr Polym 230:115623. https://doi.org/10.1016/j.carbpol.2019.115623

    Article  Google Scholar 

  252. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809. https://doi.org/10.1002/adfm.200801100

    Article  Google Scholar 

  253. Salzer M, Spettl A, Stenzel O, Smått JH, Lindén M, Manke I et al (2012) A two-stage approach to the segmentation of FIB-SEM images of highly porous materials. Mater Charact 69:115–126. https://doi.org/10.1016/j.matchar.2012.04.003

    Article  Google Scholar 

  254. Elia P, Nativ-Roth E, Zeiri Y, Porat Z (2016) Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous Mesoporous Mater 225:465–471. https://doi.org/10.1016/j.micromeso.2016.01.007

    Article  Google Scholar 

  255. Du P, Liu L, Dong Y, Li W, Li J, Liu Z et al (2021) Synthesis of hierarchically porous boron-doped carbon material with enhanced surface hydrophobicity and porosity for improved supercapacitor performance. Electrochim Acta 370:137801. https://doi.org/10.1016/j.electacta.2021.137801

    Article  Google Scholar 

  256. Kim CHJ, Zhao D, Lee G, Liu J (2016) Strong, machinable carbon aerogels for high performance supercapacitors. Adv Funct Mater 26:4976–4983. https://doi.org/10.1002/adfm.201601010

    Article  Google Scholar 

  257. Smolin YY, Van Aken KL, Boota M, Soroush M, Gogotsi Y, Lau KKS (2017) Engineering ultrathin polyaniline in micro/mesoporous carbon supercapacitor electrodes using oxidative chemical vapor deposition. Adv Mater Interfaces. https://doi.org/10.1002/admi.201601201

    Article  Google Scholar 

  258. Daikh AA, Zenkour AM (2019) Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater Res Express 6:065703. https://doi.org/10.1088/2053-1591/ab0971

    Article  Google Scholar 

  259. Shahsavari D, Shahsavari M, Li L, Karami B (2018) A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp Sci Technol 72:134–149. https://doi.org/10.1016/j.ast.2017.11.004

    Article  Google Scholar 

  260. Gupta A, Talha M (2018) Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int J Struct Stab Dyn. https://doi.org/10.1142/S021945541850013X

    Article  MathSciNet  Google Scholar 

  261. Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32:111–120. https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  262. Forooghi A, Rezaey S, Haghighi SM, Zenkour AM (2021) Thermal instability analysis of nanoscale FG porous plates embedded on Kerr foundation coupled with fluid flow. Eng Comput. https://doi.org/10.1007/s00366-021-01426-3

    Article  Google Scholar 

  263. Zenkour AM (2020) Quasi-3D refined theory for functionally graded porous plates: displacements and stresses. Phys Mesomech 23:22–35. https://doi.org/10.1134/S1029959920010051

    Article  Google Scholar 

  264. Mashat DS, Zenkour AM, Radwan AF (2020) A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity. Eur J Mech A/Solids 82:103985. https://doi.org/10.1016/j.euromechsol.2020.103985

    Article  MathSciNet  MATH  Google Scholar 

  265. Zhu B, Chen XC, Guo Y, Li YH (2021) Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections. Int J Mech Sci 189:105947. https://doi.org/10.1016/j.ijmecsci.2020.105947

    Article  Google Scholar 

  266. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. Int J Mech Sci 188:105966. https://doi.org/10.1016/j.ijmecsci.2020.105966

    Article  Google Scholar 

  267. Moradi-Dastjerdi R, Behdinan K, Safaei B, Qin Z (2020) Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111141

    Article  Google Scholar 

  268. Safaei B, Moradi-Dastjerdi R, Behdinan K, Qin Z, Chu F (2019) Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111209

    Article  Google Scholar 

  269. Barati MR, Shahverdi H, Ashraf, Zenkour M, Zenkour AM (2017) Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory. Mech Adv Mater Struct 24(12): 987–998. https://doi.org/10.1080/15376494.2016.1196799

  270. Golmohammadi A, Tarkashvand A, Siahtiry MS (2020) Effects of pores different distributions on vibrational behavior of functionally graded porous cylinder applying Haar wavelet computational technique. Compos Struct 235:111729. https://doi.org/10.1016/j.compstruct.2019.111729

    Article  Google Scholar 

  271. Barati MR, Zenkour AM (2019) Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech Adv Mater Struct 26:503–511. https://doi.org/10.1080/15376494.2017.1400622

    Article  Google Scholar 

  272. Zenkour AM, Radwan AF (2019) Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities. Compos Struct 213:133–143. https://doi.org/10.1016/J.COMPSTRUCT.2019.01.065

    Article  Google Scholar 

  273. Safaei B, Moradi-Dastjerdi R, Behdinan K, Chu F (2019) Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers. Aerosp Sci Technol 91:175–185. https://doi.org/10.1016/j.ast.2019.05.020

    Article  Google Scholar 

  274. Fan F, Sahmani S, Safaei B (2021) Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112969

    Article  Google Scholar 

  275. Sobhy M, Zenkour AM (2019) Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos Struct 220:289–303. https://doi.org/10.1016/J.COMPSTRUCT.2019.03.096

    Article  Google Scholar 

  276. Barati MR, Zenkour AM. Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions. Mech Adv Mater Struct 26(12):1081–1088.

  277. Trinh MC, Kim SE (2019) A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2019.105356

    Article  Google Scholar 

  278. Nguyen LB, Thai CH, Zenkour AM, Nguyen-Xuan H (2019) An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates. Int J Mech Sci 157–158:165–183. https://doi.org/10.1016/J.IJMECSCI.2019.04.017

    Article  Google Scholar 

  279. Hung DX, Tu TM, Van LN, Anh PH (2020) Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2020.106253

    Article  Google Scholar 

  280. Liu Y, Qin Z, Chu F (2020) Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1818904

    Article  Google Scholar 

  281. Alghanmi RA, Zenkour AM (2021) Effect of porosity on the bending of functionally graded plates integrated with PFRC layer. Eur Phys J Plus 136:142. https://doi.org/10.1140/epjp/s13360-021-01123-6

    Article  Google Scholar 

  282. Alghanmi RA, Zenkour AM (2021) Effect of porosity on the bending of functionally graded plates integrated with PFRC layer. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-021-01123-6

    Article  Google Scholar 

  283. Tran TT, Tran VK, Pham QH, Zenkour AM (2021) Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Compos Struct 264:113737. https://doi.org/10.1016/j.compstruct.2021.113737

    Article  Google Scholar 

  284. Slimane M, Adda HM, Mohamed M, Hakima B, Hadjira H, Sabrina B (2020) Effects of even pores distribution of functionally graded plate porous rectangular and square. Procedia Struct Integr 26:35–45. https://doi.org/10.1016/j.prostr.2020.06.006

    Article  Google Scholar 

  285. Vinyas M (2020) On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos Struct 240:112044. https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  286. Sobhy M, Zenkour AM (2019) Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves Random Complex Med. https://doi.org/10.1080/17455030.2019.1634853

    Article  Google Scholar 

  287. Zenkour AM, Aljadani MH (2021) Quasi-3D refined theory for functionally graded porous plates: vibration analysis. Phys Mesomech 24:243–256. https://doi.org/10.1134/S1029959921030036

    Article  Google Scholar 

  288. Moradi-Dastjerdi R, Behdinan K (2020) Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers. Int J Mech Sci 167:105283. https://doi.org/10.1016/j.ijmecsci.2019.105283

    Article  Google Scholar 

  289. Wang YQ, Zu JW (2017) Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol 69:550–562. https://doi.org/10.1016/j.ast.2017.07.023

    Article  Google Scholar 

  290. Kim J, Żur KK, Reddy JN (2019) Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct 209:879–888. https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  291. Rostami R, Mohammadimehr M (2020) Vibration control of sandwich plate–reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method. J Vib Control. https://doi.org/10.1177/1077546320948330

    Article  Google Scholar 

  292. Singh SJ, Harsha SP (2020) Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation. Int J Mech Mater Des 16:707–731. https://doi.org/10.1007/s10999-020-09498-7

    Article  Google Scholar 

  293. Rezaei AS, Saidi AR, Abrishamdari M, Mohammadi MHP (2017) Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach. Thin-Walled Struct 120:366–377. https://doi.org/10.1016/j.tws.2017.08.003

    Article  Google Scholar 

  294. Kumar V, Singh SJ, Saran VH, Harsha SP (2021) Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s foundation. Eur J Mech A/Solids 85:104124. https://doi.org/10.1016/j.euromechsol.2020.104124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Safaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alibar, M.Y., Safaei, B., Asmael, M. et al. Effect of Carbon Nanotubes and Porosity on Vibrational Behavior of Nanocomposite Structures: A Review. Arch Computat Methods Eng 29, 2621–2657 (2022). https://doi.org/10.1007/s11831-021-09669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09669-5

Navigation