Skip to main content
Log in

The thermophysical properties of bulk metallic glass-forming liquids

  • Overview
  • Metallic Glasses
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk metallic glass-forming liquids are alloys with typically three to five metallic components that have a large atomic-size mismatch and a composition close to a deep eutectic. They are dense liquids with small free volumes and viscosities that are several orders of magnitude higher than in pure metals or previously known alloys. In addition, these melts are energetically closer to the crystalline state than other metallic melts due to their high packing density in conjunction with a tendency to develop short-range order. These factors lead to slow crystallization kinetics and high glass-forming ability. Crystallization kinetics is very complex, especially in the vicinity of the glass transition, due to the influence of phase separation and the decoupling of the diffusion constants of the different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 31 (1991), p. 425.

    Google Scholar 

  2. T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM, 32 (1991), p. 1005.

    CAS  Google Scholar 

  3. A. Inoue et al., Mater. Trans. JIM, 32 (1991), p. 609.

    CAS  Google Scholar 

  4. A. Peker and W. L. Johnson, Appl. Phys. Lett., 63 (1993), p. 2342.

    Article  Google Scholar 

  5. W.L. Johnson, MRS Bull., 24 (1999), p. 42.

    CAS  Google Scholar 

  6. W. Klement, R. Willens, and P. Duwez, Nature, 187 (1960), p. 869.

    Article  CAS  Google Scholar 

  7. H.S. Chen and D. Tumbull, J. Chem. Phys., 48 (1968), p. 2560.

    Article  CAS  Google Scholar 

  8. H.S. Chen and D. Turnbull, Acta Metall., 17 (1969), p. 1021.

    Article  CAS  Google Scholar 

  9. R.W. Cahn, Mater. Sci. Technol., vol. 9, ed. R.W. Cahn, P. Haasen, and E. Kramer (Weinheim, Germany: Wiley-VCH, 1991).

    Google Scholar 

  10. Y.J. Kim et al., Appl. Phys Lett., 68 (1996), p. 1057.

    Article  CAS  Google Scholar 

  11. A. Masuhr et al., Phys. Rev. Lett., 82 (1999), p. 2290.

    Article  CAS  Google Scholar 

  12. D. Turnbull, J. Appl. Phys., 21 (1950), p. 1022.

    Article  CAS  Google Scholar 

  13. C.V. Thompson and F. Spaepen, Acta Metall., 27 (1979), p. 1855.

    Article  CAS  Google Scholar 

  14. K.S. Dubey and P. Ramachandrarao, Acta Metall., 32 (1984), p. 323.

    Article  Google Scholar 

  15. L. Battezzati and E. Garrone, Z. Metallkde, 75 (1984), p. 305.

    CAS  Google Scholar 

  16. R. Bormann and K. Zöltzer, Phys. Stat. Sol., 131 (1992), p. 691.

    Article  CAS  Google Scholar 

  17. R. Busch, unpublished.

  18. M.C. Lee et al., Mater. Sci. Eng., 89 (1988), p. 301.

    Google Scholar 

  19. R. Busch, Y.J. Kim, and W.L. Johnson, J. Appl. Phys., 77 (1995), p. 4039.

    Article  CAS  Google Scholar 

  20. R. Busch, W. Liu, and W.L. Johnson, J. Appl. Phys., 83 (1998), p. 4134.

    Article  CAS  Google Scholar 

  21. G. Wilde et al., Appl. Phys. Lett., 65 (1994), p. 397.

    Article  CAS  Google Scholar 

  22. I.R. Lu et al., J. Non-Cryst. Solids, 252 (1999), p. 577.

    Article  Google Scholar 

  23. S.C. Glade et al., J. Appl. Phys., 87 (2000), p. 7242.

    Article  CAS  Google Scholar 

  24. F. Gärtner, private communication.

  25. K. Ohsaka et al., Appl. Phys. Lett., 70 (1997), p. 726.

    Article  CAS  Google Scholar 

  26. S.S. Tsao and F. Spaepen, Acta Metall., 33 (1985), p. 1355.

    Article  Google Scholar 

  27. C.A. Volkert and F. Spaepen, Acta Metall., 37 (1989), p. 1355.

    Article  CAS  Google Scholar 

  28. E. Bakke, R. Busch, and W.L. Johnson, Appl. Phys. Lett., 67 (1995), p. 3260.

    Article  CAS  Google Scholar 

  29. R. Busch, E. Bakke, and W.L. Johnson, Acta Mater., 46 (1998), p. 4725.

    Article  CAS  Google Scholar 

  30. T.A. Waniuk et al., Acta Mater., 46 (1998), p. 5229.

    Article  CAS  Google Scholar 

  31. C.A. Angell, Science, 267 (1995), p. 1924.

    Article  CAS  Google Scholar 

  32. G.S. Grest and M.H. Cohen, Adv. Chem. Phys., 48 (1981), p. 455.

    Article  CAS  Google Scholar 

  33. C.A. Angell, B.E. Richards, and V. Velikov, J. Phys.: Condens. Matter., 11 (1999), p. A75.

    Google Scholar 

  34. A. Meyer et al., Phys. Rev. Lett., 80 (1998), p. 4454.

    Article  CAS  Google Scholar 

  35. A. Meyer, R. Busch, and H. Schober, Phys. Rev. Lett., 85 (1999), p. 5027.

    Article  Google Scholar 

  36. M. Weiss, M. Moske, and K. Samwer, Appl. Phys. Lett., 69 (1996), p. 3200.

    Article  CAS  Google Scholar 

  37. K. Samwer, R. Busch, and W.L. Johnson, Phys. Rev. Lett., 82 (1999), p. 580.

    Article  CAS  Google Scholar 

  38. M.K. Miller et al., J. de Physique IV, 6 (C5) (1996), p. 217.

    Google Scholar 

  39. R. Busch et al., Appl. Phys. Lett., 67 (1995), p. 1544.

    Article  CAS  Google Scholar 

  40. S. Schneider, P. Thiyagarajan, and W.L. Johnson, Appl. Phys. Lett., 68 (1996), p. 493.

    Article  CAS  Google Scholar 

  41. F. Faupel, P.W. Hüppe, and K. Rätzke, Phys. Rev. Lett., 65 (1990), p. 1219.

    Article  CAS  Google Scholar 

  42. K. Rätzke, P.W. Hüppe, and F. Faupel, Phys. Rev. Lett., 68 (1992), p. 2347.

    Article  Google Scholar 

  43. U. Geyer et al., Phys. Rev. Lett., 75 (1995), p. 2364.

    Article  CAS  Google Scholar 

  44. F. Wenwer et al., Defect and Diffusion Forum, 143–147 (1997), p. 831.

    Google Scholar 

  45. E. Budke et al., Defect and Diffusion Forum, 143–147 (1997), p. 825.

    Google Scholar 

  46. H. Ehmler et al., Phys. Rev. Lett., 80 (1998), p. 4919.

    Article  CAS  Google Scholar 

  47. W.L. Johnson, Prog. Mat. Sci., 30 (1986), p. 81.

    Article  CAS  Google Scholar 

  48. A.L. Greer, N. Karpe, and J. Bottiger, J. Alloys and Compounds, 194 (1993), p. 199.

    Article  CAS  Google Scholar 

  49. U. Geyer et al., Appl. Phys. Lett., 69 (1996), p. 2492.

    Article  CAS  Google Scholar 

  50. X.P. Tang et al., Phys. Rev. Lett., 81 (1998), p. 5358.

    Article  CAS  Google Scholar 

  51. X.P. Tang et al., Nature, 402 (1999), p. 160.

    Article  CAS  Google Scholar 

  52. R. Busch et al., Appl. Phys. Lett., 67 (1996), p. 1544.

    Article  Google Scholar 

  53. S. Schneider, P. Thiyagarajan, and W.L. Johnson, Appl. Phys. Lett., 68 (1996), p. 493.

    Article  CAS  Google Scholar 

  54. W.H. Wang et al., Appl. Phys. Lett., 71 (1997), p. 1053.

    Article  CAS  Google Scholar 

  55. W.H. Wang, Q. Wei, and S. Friedrich, Phys. Rev. B, 57 (1998), p. 8211.

    Article  CAS  Google Scholar 

  56. J. Schroers et al., Phys. Rev. B, 60 (1999), p. 11855.

    Article  CAS  Google Scholar 

  57. J. Schroers et al., Appl. Phys. Lett., 76 (2000), p. 2343.

    Article  CAS  Google Scholar 

  58. K.F. Kelton, Philos. Mag. Lett., 77 (1997), p. 337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article is available on-line at www.tms.org/pubs/journals/JOM/0007/Busch-0007.html.

For more information, contact R. Busch, Oregon State University, Department of Mechanical Engineering, Rogers Hall 204, Corvallis, Oregon 97331; (541) 737-2648; fax (541) 737-2600; e-mail ralf.busch@orst.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, R. The thermophysical properties of bulk metallic glass-forming liquids. JOM 52, 39–42 (2000). https://doi.org/10.1007/s11837-000-0160-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0160-7

Keywords

Navigation