Skip to main content

Advertisement

Log in

Metal hydrides for vehicular applications: The state of the art

  • Metal Hydrides
  • Feature
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent developments in light metal complex hydrides show that there is a potential for hydrogen storage using these hydrides in fuel cells for on-board vehicular and other applications. The search for new alloys promises to have practical significance with the realization that hydrogen as a fuel holds the key to filling energy needs and solving environmental problems. This review presents the U.S. Department of Energy FreedomCAR goals for hydrogen storage, storage capacities of important hydrides, and current developments in light-metal complex hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html.

  2. L. Schlapbach and A. Züttel, Nature, 414 (2001), p. 353.

    Article  CAS  Google Scholar 

  3. A. Züttel, Mater. Today, (2003), p. 24.

  4. B. Johnston, M.C. Mayo, and A. Khare, Technovation, 25 (2005), p. 569.

    Article  Google Scholar 

  5. ww.gm.com/company/gmability/adv_tech/images/fact_sheets/hydrogen3.pdf.

  6. www.bmwworld.com/hydrogen.

  7. www.daimlerchrysler.com/dccom (search: hydrogen).

  8. http://world.honda.com/FuelCell.

  9. www.toyota.co.jp/en/tech/environment/fchv.

  10. www.h2cars.biz.

  11. H. Buchener and R. Povel, Int. J. Hydrogen Energy, 7 (1982), p. 259.

    Article  Google Scholar 

  12. www.eere.energy.gov/vehiclesandfuels/about/partnership s/freedomcar/index.shtml.

  13. G. Thomas (Presentation at the IPHE International Hydrogen Storage Conference, Lucca, Italy, 19–22 June 2005).

  14. Y. Fukal, The Metal-Hydrogen System—Basic Bulk Properties (Berlin: Springer-Verlag, 1993).

    Google Scholar 

  15. L. Schlapbach, editor, Topics in Appl, Phys. Vol. 63: Hydrogen in Intemetallic Compounds I (Berlin: Springer, 1988).

    Google Scholar 

  16. R. Bowman, J. Alloys Compd., 356–357 (2003), p. 789.

    Article  CAS  Google Scholar 

  17. www.panasonic.com/industrial/battery/oem/chem/nicmet.

  18. M. Coleman et al., “Zirconium Iron Disproportionation during Hydriding Reactions in Nuclear Gettering Operation”, Adv. Mater. Energy Conv. II ed. D. Chandra, R.G. Bautista, and L. Schlapbach (Warrendale, PA, TMS, 2004), pp. 429–435.

    Google Scholar 

  19. F.E. Lynch, J. Less-Common Metals, 174 (1–2) (1991), pp. 943–958.

    Article  CAS  Google Scholar 

  20. W.M. Mueller, J.P. Blackledge, and G.G. Libowitz, Metal Hydrides (New York: Academic, 1968).

    Google Scholar 

  21. L. Schlapbach, Topics in Appl. Phys., Vol. 63: Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamics, and Crystallographic Properties, Preparation (Berlin: Springer Verlag 1988).

    Google Scholar 

  22. G. Sandrock, J. Alloys Compd., 293–295 (1999), p. 877.

    Article  Google Scholar 

  23. K. Yvon, Chimia, 52 (10) (1998), p. 613.

    CAS  Google Scholar 

  24. DOE Hydrogen Program Annual Report (Washington, D.C.: U.S. DOE, 2004), pp. 195–214.

  25. B. Bogdanovic and M. Schwickardi, J. Alloys Comp., 253-254 (1997), p. 1.

    Article  CAS  Google Scholar 

  26. G. Sandrock et al., Appl. Phys. A, 80, (2005), pp. 687–690.

    Article  CAS  Google Scholar 

  27. G. Sandrock and G. Thomas, Appl. Phys. A. 72, (2001), p. 153.

    Article  CAS  Google Scholar 

  28. W. Luo and E. Ronnebro, J. Alloys Compd., 404–406 (2005), p. 392.

    Article  CAS  Google Scholar 

  29. S.W. Lambert et al., J. Alloys Compd., 187 (1) (1992), p. 113.

    Article  CAS  Google Scholar 

  30. D. Chandra et al., J. Alloys Compd., 199 (1–2) (1993), pp. 93–100.

    Article  CAS  Google Scholar 

  31. A. Percheron-Guegan, C. Lartigue, and J.C. Archard, J. Less-Common Metals, 109 (1985), p. 287.

    Article  CAS  Google Scholar 

  32. A. Sharma, “Effect of Thermal Cycling and Cold-Work on V0.995 C0.005 Hydrides” (M.S. Thesis, University of Nevada, Reno, NV, 1992).

    Google Scholar 

  33. Y. Nakamura, R.C. Bowman Jr., and E. Akiba, J. Alloys Compd., 373 (2004), p. 183.

    CAS  Google Scholar 

  34. B. Bogdanovic et al., J. Alloys Compd., 302 (2000), p. 36.

    Article  CAS  Google Scholar 

  35. G.J. Thomas et al., J. Alloys Compd., (330–332) (2002), p. 702.

    Article  Google Scholar 

  36. C.M. Jensen et al., Int. J. Hydrogen Energy, 24 (1999), p. 461.

    Article  CAS  Google Scholar 

  37. K.J. Gross, G. Sandrock, and G.J. Thomas, J. Alloys Compd., 330–332 (2002), p. 691.

    Article  Google Scholar 

  38. K.J. Gross, G.J. Thomas, and C.M. Jensen, J. Alloys Compd., 330–332 (2002), p. 683.

    Article  Google Scholar 

  39. G. Sandrock, K. Gross, and G. Thomas, J. Alloys Compd., 339 (2002), p. 299.

    Article  CAS  Google Scholar 

  40. V.P. Balema and L. Balema, Phys. Chem. Chem. Phys., 7 (2005), p. 1310.

    Article  CAS  Google Scholar 

  41. R.T. Walters and J.H. Scogin, J. Alloys Compd., 379 (2004), p. 135.

    Article  CAS  Google Scholar 

  42. H.W. Brinks et al., J. Alloys Compd., 376 (2004), p. 215.

    Article  CAS  Google Scholar 

  43. R.A. Zidan et al., J. Alloys Compd., 285 (1999), p. 119.

    Article  CAS  Google Scholar 

  44. A. Zaluska, L. Zaluski, and J.O. Ström-Olsen, J. Alloys Compd., 290 (1999), p. 71.

    Article  Google Scholar 

  45. A. Zaluska, L. Zaluski, and J.O. Ström-Olsen, J. Alloys Compd., 298 (2000), p. 125.

    Article  CAS  Google Scholar 

  46. B. Bogdanovic et al., J. Alloys Compd., 350 (2003), p. 246.

    Article  CAS  Google Scholar 

  47. W. Grochala and P.P. Edwards, Chem. Rev., 104 (2004), p. 1283.

    Article  CAS  Google Scholar 

  48. H.W. Brinks et al., J. Alloys Compd., 351 (2003), p. 222.

    Article  CAS  Google Scholar 

  49. J. Chen et al., J. Phys. Chem. B, 105 (2001), p. 11214.

    Article  CAS  Google Scholar 

  50. D. Blanchard et al., Mater. Sci. Eng. B, 108 (2004), p. 54.

    Article  CAS  Google Scholar 

  51. M. Resan et al., Int. J. Hydrogen Energy, 30 (2005), p. 1417.

    Article  CAS  Google Scholar 

  52. A. Andreasen, T. Vegge, A.S. Pedersen, J. Solid State Chemistry, 178 (2005), pp. 3672.

    Article  CAS  Google Scholar 

  53. G. Sandrock et al., J. Alloys Compd., 330–332 (2002), p. 696.

    Article  Google Scholar 

  54. M. Fichtner, O. Fuhr, and O. Kircher, J. Alloys Compd., 356–357 (2003), p. 418.

    Article  CAS  Google Scholar 

  55. H. Morioka et al., J. Alloys Compd., 353 (2003), p. 310.

    Article  CAS  Google Scholar 

  56. J. Graetz et al., Phys. Rev. B, 71 (2005), p. 184115.

    Article  CAS  Google Scholar 

  57. P. Chen et al., Nature, 420 (21) (2002), p. 302; J. Phys. Chem. B. 107 (2003), p. 10967.

    Article  CAS  Google Scholar 

  58. K. Ohoyama et al., J. Phys. Soc. Japan, 74 (2005), p. 483.

    Article  CAS  Google Scholar 

  59. E. Fakioglu, Y. Yurum, and T.N. Veziroglu, Int. J. Hydrogen Energy, 29 (2004), p. 1371.

    Article  CAS  Google Scholar 

  60. C. Read, G. Ordaz, and S. Satyapal, WE-Heraeus Seminar on Hydrogen Storage with Novel Nanomaterials (23–27 October 2005), http://www.h-workshop.uni-konstanz.de/.

  61. R. Zidan, D.K. Slattery, and J. Burns, Int. J. Hydrogen Energy, 16 (1991), p. 821.

    Article  CAS  Google Scholar 

  62. Y. Chen et al., Int. J. Hydrogen Energy, in press.

  63. C.X. Shang et al., Int. J. Hydrogen Energy, 29 (2004), p. 73.

    Article  CAS  Google Scholar 

  64. R.A. Varin et al., J. Alloys Compd. 373 (2004), p. 270.

    CAS  Google Scholar 

  65. A. E. Finholt, A. C. Bond, and H. I. Schlesinger, J. Am. Chem., 69 (1947), p. 1199.

    Article  CAS  Google Scholar 

  66. F.M. Brower et al., J. Am. Chem. Soc., 98 (1976), p. 2450.

    Article  CAS  Google Scholar 

  67. J.W. Turley and H.W. Rinn, Inorg. Chem., 8 (1969), p. 18.

    Article  CAS  Google Scholar 

  68. G. Sandrock et al., J. Alloys. Comp., (2005), in press.

  69. J. Graetz and J.J. Reilly, J. Phys. B, 109 (2005), pp. 22181–22185.

    CAS  Google Scholar 

  70. J. Graetz and J. Reilly, J. Alloys and Comp., in press (2005).

  71. G.C. Sienke et al., J. Chem. Phys., 47 (1967), p. 2759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, D., Reilly, J.J. & Chellappa, R. Metal hydrides for vehicular applications: The state of the art. JOM 58, 26–32 (2006). https://doi.org/10.1007/s11837-006-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0005-0

Keywords

Navigation