Skip to main content
Log in

The state-of-the-art in sealing technology for solid oxide fuel cells

  • Overview
  • Fuel Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

One of the keys to developing viable solid oxide fuel cell (SOFC) systems is to first develop reliable and inexpensive stack sealing technology. Three general approaches are currently being pursued: rigid bonded sealing, compressive sealing, and compliant bonded sealing. This review highlights the advantages and limitations of each option, discusses some of the leading concepts, and out-lines the future steps that need to be taken in their development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Klass, Energy Policy, 31 (2003), p. 353.

    Article  Google Scholar 

  2. K.S. Deffeyes, Hubbert's Peak, The Impending World Oil Shortage (Princeton, NJ: Princeton University Press, 2001).

    Google Scholar 

  3. J. Larmine and A. Dicks, Fuel Cell Systems Explained (West Sussex, U.K., Wiley & Sons, 1999).

    Google Scholar 

  4. M.L. Perry and T.F. Fuller, J. Electrochem. Soc., 149 (2002), p. S59.

    Article  CAS  Google Scholar 

  5. N.Q. Minh, J. Amer. Cer. Soc., 76 (1993), p. 563.

    Article  CAS  Google Scholar 

  6. T. Iwata and Y. Enami, J. Electrochem. Soc., 145 (1998), p. 931.

    Article  CAS  Google Scholar 

  7. J. Hartvigsen et al., Ceram. Trans., 65 (1996), p. 279.

    CAS  Google Scholar 

  8. J. Fergus, J. Power Sources, 147 (2005), p. 46.

    Article  CAS  Google Scholar 

  9. P. Singh and N.Q. Minh, Int. J. Appl. Cer. Techn., 1 (2004), p. 5.

    Article  CAS  Google Scholar 

  10. A.B. Stambouli and E. Traversa, Ren. & Sust. Energy Rev., 6 (2002), p. 433.

    Article  CAS  Google Scholar 

  11. X. Wang, N. Nakagawa, and K. Kato, Electrochemistry, 70 (2002), p. 252.

    CAS  Google Scholar 

  12. M. Sase et al., J. Phys. Chem. Sol., 66 (2005), p. 343.

    Article  CAS  Google Scholar 

  13. J.Y. Yi and G.M. Choi, J. Eur. Cer. Soc., 25 (2005), p. 2655.

    Article  CAS  Google Scholar 

  14. K. Kokini and R.W. Perkins, AIAA Journal, 22 (1984), p. 1472.

    Google Scholar 

  15. J. Laurencin et al., Fuel Cells, 6 (2006), p. 64.

    Article  CAS  Google Scholar 

  16. Z. Yang et al., J. Electrochem. Soc., 150 (2003), p. A1188.

    Article  CAS  Google Scholar 

  17. S. Shaffer, “Development Update on Delphi's Solid Oxide Fuel Cell System” (Paper presented at the 2004 Solid State Energy Conversion Alliance Meeting, Boston, MA) www.netl.doe.gov/publications/proceedings/04/seca-wrkshp/Delphi%20-%20Shaffer.pdf.

  18. K. Ley et al., J. Mater. Res., 11 (1996), p. 1489.

    Article  CAS  Google Scholar 

  19. F. Tietz, Ionics 5 (1999), p. 129.

    Article  CAS  Google Scholar 

  20. P. Larsen et al., Solid Oxide Fuel Cells IV (Pennington, NJ: Electrochemical Society, 1995).

    Google Scholar 

  21. K.A. Nielsen et al., Ceramic Engineering & Science Procedings, Vol. 25 (Westerville, OH: American Ceramic Society, 2004), p. 309.

    Google Scholar 

  22. T. Schwickert et al., Proceedings of the 1st International Brazing and Soldering Conference (Materials Park, OH: ASM International, 2000), p. 116.

    Google Scholar 

  23. K. Eichler et al., J. Europ. Ceram. Soc., 19 (1999), p. 1101.

    Article  CAS  Google Scholar 

  24. K.D. Meinhardt et al., U.S. patent 6,430,966 (2002).

  25. S.-B. Sohn et al., J. Non-Cryst. Sol., 297 (2002), p. 103.

    Article  CAS  Google Scholar 

  26. C. Lara, M.J. Pascual, and A. Duran, J. Non-Cryst. Sol., 348 (2004), p. 149.

    Article  CAS  Google Scholar 

  27. M.B. Volf, Chemical Approach to Glass: Glass Science and Technology, Vol. 7, (New York: Elsevier, 1984).

    Google Scholar 

  28. Y.-N. Sung, J. Mater. Sci., 31 (1996), p. 5421.

    Article  CAS  Google Scholar 

  29. S. Mukerjee et al., Solid Oxide Fuel Cells IX, Vol. I, (Pennington, NJ: Electrochemical Society, 2005), p. 48.

    Google Scholar 

  30. L. Blum et al., Solid Oxide Fuel Cells IX, Vol. I (Pennington, NJ: Electrochemical Society, 2005), p. 39.

    Google Scholar 

  31. K.G. Ewsuk and L.W. Harrison, Sintering of Advanced Ceramics. Ceramics Transactions Vol. 7 (Westerville, OH: American Ceramic Society, 1990).

    Google Scholar 

  32. M. Brochu et al., J. Amer. Ceram. Soc., 89 (2006), p. 810.

    Article  CAS  Google Scholar 

  33. K.D. Meinhardt et al., Joining of Advanced and Specialty Materials VII, Proceedings from Materials Solutions 2004 (Materials Park, OH: ASM International, 2005), p. 124.

    Google Scholar 

  34. J. Zizelman, “Development Update on Delphi's Solid Oxide Fuel Cell System: from Gasoline to Electric Power” (Paper presented at the 4th Annual Solid State Energy Conversion Alliance Workshop, 15–16 April, 2003, Seattle WA), www.delphi.com/pdf/fuelcells/sofc_update_apr03.pdf.

  35. www.netl.doe.gov/publications/proceedings/05/SECA_PeerReview/posters/UCinn%20Poster.pdf.

  36. Z. Yang et al., Joining of Advanced and Specially Materials V, Proceedings from Materials Solutions 2002 (Materials Park, OH: ASM International, 2003) p. 116.

    Google Scholar 

  37. Z. Yang, K.D. Meinhardt, and J.W. Stevenson, J. Electrochem. Soc., 150 (2003), p. A1095.

    Article  CAS  Google Scholar 

  38. K.D. Meinhardt, personal communication (2006).

  39. C.A. Coyle et al., U.S. patent 6,843,406 (2005).

  40. L.A. Chick et al., U.S. patent application 20,060,063,057 (2006).

  41. R.W. Rice, Amer. Ceram. Soc. Bull., 62 (1983), p. 889.

    CAS  Google Scholar 

  42. E. Bouillon et al., J. Mater. Sci., 26 (1991), p. 1517.

    Article  CAS  Google Scholar 

  43. C.A. Lewinsohn et al., J. Amer. Cer. Soc., 84 (2001), p. 2240.

    Article  CAS  Google Scholar 

  44. C.A. Lewinsohn and S. Elangovan, Ceramic Engineering & Science Proceedings, Vol. 24 (Westerville, OH: American Ceramic Society, 2003), p. 317.

    Google Scholar 

  45. E. Pippel et al., J. Eur. Cer. Soc., 17 (1997), p. 1259.

    Article  CAS  Google Scholar 

  46. P. Greil, J. Amer. Cer. Soc., 78 (1995), p. 835.

    Article  CAS  Google Scholar 

  47. M. Bram et al., Solid Oxide Fuel Cells IX (Pennington, NJ: Electrochemical Society, 2003), p. 888.

    Google Scholar 

  48. J. Duquette and A. Petric, J. Power Sources, 137 (2004), p. 71.

    CAS  Google Scholar 

  49. M. Bram et al., Solid Oxide Fuel Cells VII (Pennington, NJ: Electrochemical Society, 2001), p. 875.

    Google Scholar 

  50. S.P. Simner and J.W. Stevenson, J. Power Sources, 102 (2001), p. 310.

    Article  CAS  Google Scholar 

  51. Y.-S. Chou, J.W. Stevenson, and L.A. Chick, J. Power Sources, 112 (2002), p. 130.

    Article  CAS  Google Scholar 

  52. Y.-S. Chou and J.W. Stevenson, J. Power Sources, 112 (2002), p. 376.

    Article  CAS  Google Scholar 

  53. Y.-S. Chou and J.W. Stevenson, J. Power Sources, 135 (2004), p. 72.

    Article  CAS  Google Scholar 

  54. Y.-S. Chou and J.W. Stevenson, J. Power Sources, 140 (2005), p. 340.

    Article  CAS  Google Scholar 

  55. C.W. Fox and G.M. Slaughter, Weld. J., 43 (1964), p. 5971.

    Google Scholar 

  56. K.S. Weil and J.P. Rice, Scr. Mater., 52 (2005), p. 1081.

    Article  CAS  Google Scholar 

  57. K.S. Weil, J.Y. Kim, and J.S. Hardy, Electrochem. Sol. St. Lett., 8 (2005), p. A133.

    Article  CAS  Google Scholar 

  58. J.Y. Kim, J.S. Hardy, and K.S. Weil, J. Mater. Res., 20 (2005), p. 636.

    Article  CAS  Google Scholar 

  59. J.T. Darsell and K.S. Weil, J. Ph. Equil. and Diff., 27 (1) (2006), p. 92.

    Article  CAS  Google Scholar 

  60. J.Y. Kim and K.S. Weil, Ceramic Engineering and Science Proceedings, Vol. 27 (Westerville, OH: American Ceramic Society, 2006).

    Google Scholar 

  61. K.S. Weil et al., Scr. Mater., 54 (6) (2006), p. 1071.

    Article  CAS  Google Scholar 

  62. K.S. Weil et al., J. Power Sources, 152C (2005) p. 97.

    Google Scholar 

  63. R.L. Kleuh and W.W. Mullins, Trans. Metall. Soc. of AIME, 242 (1968), p. 237.

    Google Scholar 

  64. J.Y. Kim. J.S. Hardy, and K.S. Weil, Inter. J. Hydrt. Energy, in press.

  65. K.S. Weil et al., J. Mater. Eng. and Perf., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weil, K.S. The state-of-the-art in sealing technology for solid oxide fuel cells. JOM 58, 37–44 (2006). https://doi.org/10.1007/s11837-006-0052-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0052-6

Keywords

Navigation