Skip to main content
Log in

Predicting oxide stability in high-temperature water vapor

  • Research Summary
  • High-Temperature Protection
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The importance of understanding and predicting the interactions of oxides with water vapor at high temperatures is demonstrated in this article. Methods for observing volatilization phenomena and identifying the chemical formulae for volatile metal hydroxides are discussed. In addition, techniques for obtaining accurate thermodynamic data for gaseous metal hydroxide species are described. Detailed examples of the stability of the principle structural and/or protective oxides chromia (Cr2O3), silica (SiO2), and alumina (Al2O3) in high-temperature water vapor are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Jacobson, NASA TP3162 (Washington, D.C.: NASA, 1992).

    Google Scholar 

  2. E.J. Opila and N.S. Jacobson, Fundamental Aspects of High Temperature Corrosion, ed. D.A. Shores, R.A. Rapp, and P.Y. Hou (Pennington, NJ: The Electrochemical Society, Inc., 1997), pp. 269–280.

    Google Scholar 

  3. G.R. Belton and F.D. Richardson, Trans. Faraday Soc., 50 (1962), pp. 1562–1572.

    Article  Google Scholar 

  4. E.J. Opila, J. Am. Ceram. Soc., 82 (3) (1999), pp. 625–636.

    Article  CAS  Google Scholar 

  5. E.J. Opila and D.L. Myers, J. Am. Ceram. Soc., 87 (9) (2004), pp. 1701–1705.

    Article  CAS  Google Scholar 

  6. Y.-W. Kim and G.R. Belton, Met. Trans., 5 (1974), pp. 1811–1816.

    Article  CAS  Google Scholar 

  7. D. Caplan and M. Cohen, J. Electrochem. Soc., 108 (5) (1961), pp. 438–442.

    Article  CAS  Google Scholar 

  8. C.S. Tedmon, Jr., J. Electrochem. Soc., 113 (8) (1966), pp. 766–768.

    Article  CAS  Google Scholar 

  9. E.J. Opila and R.E. Hann, J. Am. Ceram. Soc., 80 (1) (1997), pp. 197–205.

    CAS  Google Scholar 

  10. E.J. Opila, J. Am. Ceram. Soc., 86 (8) (2003), pp. 1238–1248.

    CAS  Google Scholar 

  11. J. Drowart and P. Goldfinger, Angewandte Chemie, 6 (7) (1967), pp. 581–596.

    Article  CAS  Google Scholar 

  12. D.L. Hildenbrand and K.H. Lau, J. Chem. Phys., 101 (7) (1994), pp. 6076–6079.

    Article  CAS  Google Scholar 

  13. D.L. Hildenbrand and K.H. Lau, J. Chem. Phys., 108 (15) (1998), p. 6535.

    Article  CAS  Google Scholar 

  14. D.J. Meschi, W.A. Chupka and J. Berkowitz, J. Chem. Phys. 33 (2) (1960), pp. 530–533.

    Article  CAS  Google Scholar 

  15. E. Opila, Cer. Eng. & Sci. Proc., 26 (8) (2005), pp. 311–322.

    CAS  Google Scholar 

  16. C.A. Stearns et al., NASA TM73720 (Washington, D.C., NASA, 1977).

    Google Scholar 

  17. J.L. Margrave, The Characterization of High Temperature Vapors (New York: John Wiley & Sons, 1967).

    Google Scholar 

  18. U. Merten and W.E. Bell, The Characterzation of High Temperature Vapors ed. J.L. Margrave (New York: John Wiley & Sons, 1967), pp. 91–114.

    Google Scholar 

  19. A. Hashimoto, Geochim. Cosmochim. Acta. 56 (1992), pp. 511–532.

    Article  CAS  Google Scholar 

  20. N.S. Jacobson et al. J. Chem. Thermo., 37 (2005), pp. 1130–1137.

    Article  CAS  Google Scholar 

  21. G.H. Geiger and D.R. Poirier, Transport Phenomena in Metallurgy (Reading, MA: Addison-Wesley Publishing Company, 1980), p. 532.

    Google Scholar 

  22. D.R. Gaskell, An Introduction to Transport Phenomena in Materials Engineering (New York: Macmillan Publishing Company, 1992), p. 573.

    Google Scholar 

  23. K.S. Pitzer and L. Brewer, Thermodynamics, 2nd ed. (New York: McGraw Hill Book Company, 1961), ch. 27.

    Google Scholar 

  24. C.F. Melius, M.D. Allendorf, and M.E. Colvin, Proceedings of the 14th International Conference on CVD/EU ROCVD11, ed. M.D. Allendorf and C. Bernard (Pennington, NJ: The Electrochemical Society, Inc., 1997), pp. 1–14.

    Google Scholar 

  25. K. Hilpert et al., J. Electrochem. Soc., 143 (1996), p. 3642.

    Article  CAS  Google Scholar 

  26. J. Fergus, Mat. Sci. Eng. A, 397, 271, (2005).

    Article  CAS  Google Scholar 

  27. H. Asteman et al., Ox. Met., 52 (1999), p. 95.

    Article  CAS  Google Scholar 

  28. A. Yamauchi, K. Kurokawa, and H. Takahashi, Ox. Met., 59 (5/6) (2003), p. 517.

    Article  CAS  Google Scholar 

  29. B.B. Ebbinghaus, Combust. Flame, 93 (1993), p. 119.

    Article  CAS  Google Scholar 

  30. J. O'Leary, R. Kunz, and T. von Alten, Environ. Prog., 23 (2004), p. 194.

    Article  CAS  Google Scholar 

  31. J. Bailey, J. Electrochem. Soc., 144 (1997), p. 3568.

    Article  CAS  Google Scholar 

  32. H.C. Graham and H.H. Davis, J. Am. Ceram. Soc., 54 (1971), p. 89.

    Article  CAS  Google Scholar 

  33. G.C. Fryburg et al., J. Electrochem. Soc., 124 (1977), p. 1738.

    Article  CAS  Google Scholar 

  34. M. Farber and R.D. Srivastava, Combust. Flame, 20 (1973), p. 43.

    Article  CAS  Google Scholar 

  35. C. Gindorf, L. Singheiser, and K. Hilpert, J. Phys. Chem. Solids, 66 (2005), p. 384.

    Article  CAS  Google Scholar 

  36. C. Gindorf, K. Hilpert, and L. Singheiser, Solid Oxide Fuel Cells VII, ed. H. Yokokawa and S.C. Singhal (Pennington, NJ: The Electrochemical Society Inc., 2001), p. 793.

    Google Scholar 

  37. IVTANTHERMO for Windows, version 3.0, (1992–2003), www.openweb.ru/thermo/index_eng.htm.

  38. Ø. Espelid, K.J. Børve, and V.R. Jense, J. Phys Chem. A, 102 (1998), p. 10414.

    Article  CAS  Google Scholar 

  39. E.J. Opila et al., submitted to J. Phys. Chem. A.

  40. J.S. Smialek et al. Adv. Comp. Mater. 8 (1) (1999), pp. 33–45.

    CAS  Google Scholar 

  41. H. Klemm, J. Eur. Ceram. Soc., 22 (2002), pp. 2735–2740.

    Article  CAS  Google Scholar 

  42. I. Yuri and T. Hisamatsu (Paper GT2002-38886 presented at the ASME Turbo Expo, 2003).

  43. K.L. More et al. (Paper 99-GT-292 presented at the ASME Turbo Expo, 1999).

  44. Z. Yao, J. Stiglich, and T.S. Sudarshan, J. Mat. Eng. Perf., 8 (3) (1999), pp. 291–304.

    Article  CAS  Google Scholar 

  45. J.J. Petrovic, Cer. Eng. Sci. Proc., 18 (3) (1997), pp. 3–17.

    CAS  Google Scholar 

  46. A. Luttge et al., Eur. J. Mineral., 10 (1998), pp. 385–389.

    Google Scholar 

  47. M.D. Allendorf et al., J. Phys. Chem., 99 (1995), pp. 15285–15293.

    Article  CAS  Google Scholar 

  48. E.J. Opila, D.S. Fox, and N.S. Jacobson, J. Am. Ceram. Soc., 80 (4) (1997), pp. 1009–1012.

    Article  CAS  Google Scholar 

  49. R.C. Robinson and J.L. Smialek, J. Am. Ceram. Soc., 82 (7) (1999), pp. 1817–1825.

    Article  CAS  Google Scholar 

  50. C.L. Darling and H.B. Schlegel, J. Phys. Chem., 97 (1993), pp. 8207–8211.

    Article  CAS  Google Scholar 

  51. M.W. Chase, Jr. et al. editors, JANAF Thermochemical Tables, 3rd ed. (New York: American Chemical Society and American Physical Society, 1985).

    Google Scholar 

  52. B.E. Deal and A.S. Grove, J. Appl. Phys., 36 (12) (1965), pp. 3770–3778.

    Article  CAS  Google Scholar 

  53. K.N. Lee, Surf. Coating Tech., 133–134 (2000), pp. 1–7.

    Google Scholar 

  54. H.E. Eaton and G.D. Linsey, J. Eur. Ceram. Soc., 22 (2002), pp. 2741–2747.

    Article  CAS  Google Scholar 

  55. I. Spitzberg and J. Steibel, Int. J. Appl. Ceram. Technol., 1 (4) (2004), pp. 291–301.

    Article  Google Scholar 

  56. K.N. Lee et al., J. Am. Ceram. Soc., 86 (8) (2003), pp. 1299–1306.

    Article  CAS  Google Scholar 

  57. K.N. Lee, D.S. Fox, and N.P. Bansal, J. Eur. Ceram. Soc., 25 (2005), pp. 1705–1715.

    Article  CAS  Google Scholar 

  58. R.J. Kerans et al., J. Am. Ceram. Soc., 85 (11) (2002), pp. 2599–2632.

    Article  CAS  Google Scholar 

  59. R. Gadow and M. Lischka, Surf. Coating Tech., 151–152 (2002), pp. 392–399.

    Article  Google Scholar 

  60. M.D. Allendorf et al., J. Phys. Chem. A., 106 (2002), pp. 2629–2640.

    Article  CAS  Google Scholar 

  61. N.S. Jacobson et al., J. Am. Ceram. Soc., 82 (6) (1999), pp. 1473–1482.

    Article  CAS  Google Scholar 

  62. R. Naslain et al., J. Solid State Chem., 177 (2) (2004), pp. 449–456.

    Article  CAS  Google Scholar 

  63. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski, J. Mat. Sci., 39 (2004), pp. 58878–58904.

    Article  Google Scholar 

  64. R. Sakidja and J.H. Perepezko, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 36A (3) (2005), pp. 507–514.

    CAS  Google Scholar 

  65. V. Behrani et al., Intermetallics, 14 (1) (2006), pp. 24–32.

    Article  CAS  Google Scholar 

  66. N.S. Jacobson et al., J. Am. Ceram. Soc., 82 (2) (1999), pp. 393–398.

    Article  CAS  Google Scholar 

  67. D. Zhu, N.P. Bansal, and R.A. Miller, NASA/TM-2003-212544, (Washington, D.C.: NASA, 2003).

    Google Scholar 

  68. D. Zhu et al., NASA/TM-2004-213219 (Washington, D.C., NASA, 2004).

    Google Scholar 

  69. O.H. Krikorian, High Temp. High Pressures, 14 (1982), pp. 387–397.

    CAS  Google Scholar 

  70. N. Jacobson et al., J. Phys. Chem. Solids, 66 (2005), pp. 471–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opila, E.J., Jacobson, N.S., Myers, D.L. et al. Predicting oxide stability in high-temperature water vapor. JOM 58, 22–28 (2006). https://doi.org/10.1007/s11837-006-0063-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0063-3

Keywords

Navigation