Skip to main content
Log in

The deformation physics of nanocrystalline metals: Experiments, analysis, and computations

  • Overview
  • Nanostructured Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents a review of the principal mechanisms responsible for the plastic deformation of nanocrystalline metals. As the concentration of grain boundaries increases, with a decrease in grain size there is a gradual shift in the relative importance of the deformation mechanisms away from the ones operating in the conventional polycrystalline domain. This is predicted by molecular dynamics simulations that indicate a preponderance of dislocation emission/annihilation at grain boundaries and grain-boundary sliding when grain sizes are in the range 20–50 nm. Experiments show, in general, a saturation in work hardening at low strains, which is indicative of a steady-state dislocation density. This saturation is accompanied by an increased tendency toward shear localization, which is supportive of dislocation generation and annihilation at grain boundaries. Dislocation analyses recently proposed corroborate the computational predictions and provide a rational foundation for understanding the mechanical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Proceedings of the 9th IVC-V (Madrid, Spain, 1983), p. 397.

  2. H. Gleiter, Nanocrystalline Materials, Prog. Mater. Sci., 33 (1989), p. 223–315.

    Article  CAS  Google Scholar 

  3. A.H. Chokshi et al., Scripta Mater., 23 (1989), pp. 1679–1684.

    Article  CAS  Google Scholar 

  4. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mat., 45 (1997), p. 4019.

    Article  CAS  Google Scholar 

  5. G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res., 6 (1991), p. 1012.

    CAS  Google Scholar 

  6. J. Youngdahl et al., Scripta Mater., 37 (1997), p. 809.

    Article  CAS  Google Scholar 

  7. S.R. Agnew et al., Mat. Sci. Eng. A, 285 (2000), p. 391.

    Article  Google Scholar 

  8. J.R. Weertman, Mat. Sci. Eng. A, 166 (1993), p. 161.

    Article  Google Scholar 

  9. J. Weertman, Nanostructured Materials, ed. C. Koch (Norwich, NY: Noyes Publications, 2002), pp. 393–417.

    Google Scholar 

  10. Q. Wei et al., Mater. Sci. Eng. A, 381 (2004), p. 71.

    Article  Google Scholar 

  11. R.J. Asaro and S. Suresh, Acta Mater., 53 (2005), p. 3369.

    Article  CAS  Google Scholar 

  12. G.T. Gray et al., Nanostruct Mater., 9 (1997), pp. 477–480.

    Article  CAS  Google Scholar 

  13. Q. Wei et al., Acta Mater., 54 (2006), p. 77.

    CAS  Google Scholar 

  14. Q. Wei et al., Acta Mater., 52 (2004), p. 1859.

    Article  CAS  Google Scholar 

  15. H. Conrad, Met. Mater. Trans. A, 35A (2004), pp. 2681–2695.

    Article  CAS  Google Scholar 

  16. D. Jia, K.T. Ramesh, and E. Ma, Acta Mat., 51 (2003), p. 3495.

    Article  CAS  Google Scholar 

  17. J.R. Weertman et al., MRS Bulletin, 24 (1999), p. 44.

    CAS  Google Scholar 

  18. K.S. Kumar, H.V. Swygenhoven, S. Suresh, Acta Mater., 51 (2003), pp. 5743–5774.

    Article  CAS  Google Scholar 

  19. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mat. Sci., 51 (2006), p. 061921.

    Article  Google Scholar 

  20. C.S. Pande, R.A. Masumura, and R.W. Armstrong, Nanostruct. Mater., 2 (1993), pp. 323–331.

    Article  CAS  Google Scholar 

  21. R.W. Amstrong and G.D. Hughes, Advanced Materials for the Twenty-First Century: the Julia Weertman Symposium. ed. Y.W. Chung (Warrendale, PA: TMS, 1999), pp. 409–420.

    Google Scholar 

  22. R. Raj and M. Ashby, J. Met. Trans., 2A (1971), p. 1113.

    Google Scholar 

  23. H.H. Fu, D.J. Benson, and M.A. Meyers, Acta Mater., 49 (2001), pp. 2567–2582.

    Article  CAS  Google Scholar 

  24. G.J. Fan et al., Mat. Sci. Eng. A, 400 (2005), p. 243.

    Google Scholar 

  25. J.C.M. Li, Trans. Met. Soc., 227 (1963), p. 239.

    CAS  Google Scholar 

  26. M.F. Ashby, Philos. Mag., 21 (1971), p. 399.

    Google Scholar 

  27. J.P. Hirth, Met. Trans., 3 (1972), p. 3017.

    Google Scholar 

  28. M. Zehetbauer et al., Acta Mat., 47 (1999), p. 1053.

    Article  CAS  Google Scholar 

  29. M. Meyers and E. Ashworth, Philos. Mag. A, 46 (1982), p. 737.

    CAS  Google Scholar 

  30. H.H. Fu, D.J. Benson, and M.A. Meyers, Acta Mater., 52 (2004), pp. 4413–4425.

    Article  CAS  Google Scholar 

  31. Y.M. Wang, E. Ma, and M.W. Chen, Appl. Phys. Lett., 80 (2002), pp. 2395–2397.

    Article  CAS  Google Scholar 

  32. X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 3564.

    Article  CAS  Google Scholar 

  33. X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 5062.

    Article  CAS  Google Scholar 

  34. R.J. Asaro, P. Kysl, and B. Kad, Philos. Mag., 83 (2003), p. 733.

    Article  CAS  Google Scholar 

  35. M. Chen et al., Science, 300 (2003), p. 1275.

    Article  CAS  Google Scholar 

  36. M.A. Meyers, O. Voehringer, and V. Lubarda, Acta Mater., 49 (2001), p. 4025.

    Article  CAS  Google Scholar 

  37. Y.T. Zhu et al., Appl. Phys. Lett., 85 (2004), p. 5049.

    Article  CAS  Google Scholar 

  38. H.V. Swygenhoven and A. Caro, Nanostruct. Mater., 9 (1997), pp. 669–672.

    Article  Google Scholar 

  39. H.V. Swygenhoven, A. Caro, and M. Spaczer, Acta Mater., 47 (1999), pp. 3117–3126.

    Article  Google Scholar 

  40. A.G. Froseth, P.M. Derlet, and H. Van Swygenhoven, Acta Mater., 52 (2004), p. 5870.

    Google Scholar 

  41. V. Yamakov et al., Acta Mater., 49 (2001), p. 2713.

    Article  CAS  Google Scholar 

  42. V. Yamakov et al., Nature, 1 (2002), p. 45.

    Article  CAS  Google Scholar 

  43. V. Yamakov et al., Acta Mater., 50 (2002), pp. 61–73.

    Article  CAS  Google Scholar 

  44. A.J. Haslam et al., Acta Mater., 52 (2004), pp. 1971–1987.

    Article  CAS  Google Scholar 

  45. K. Kadau et al., Metall. Mater. Trans., 35A (2004), p. 2719.

    Article  CAS  Google Scholar 

  46. E.M. Bringa et al., JOM, 57 (9) (2005), p. 67.

    Article  CAS  Google Scholar 

  47. E.M. Bringa et al., Science, 309 (2005), pp. 1838–1841.

    Article  CAS  Google Scholar 

  48. Y.M. Wang et al., Appl. Phys. Lett., 88 (2006), p. 061917.

    Article  Google Scholar 

  49. K. Zhang, J.R. Weertman, and J.A. Eastman, Appl. Phys. Lett., 85 (2004), p. 5197.

    Article  CAS  Google Scholar 

  50. K. Zhang, J.R. Weertman, and J.A. Eastman, Appl. Phys. Lett., 87 (2005), p. 061921.

    Article  Google Scholar 

  51. J.A. Hurtado et al., Mater. Sci. Eng. A, 190 (1995), p. 1.

    Article  Google Scholar 

  52. J.C.M. Li, “Mechanical Grain Browth” unpublished manuscript (2005).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Mishra, A. & Benson, D.J. The deformation physics of nanocrystalline metals: Experiments, analysis, and computations. JOM 58, 41–48 (2006). https://doi.org/10.1007/s11837-006-0214-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0214-6

Keywords

Navigation