Skip to main content
Log in

The role of dislocations in the growth of nanosized voids in ductile failure of metals

  • 75 Years of Dislocations/Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dislocations are the most important element in our understanding of the mechanical response of metals. Their postulation in 1934 led to revolutionary advances in our ability to predict the mechanical behavior of materials. The authors recently advanced a dislocation mechanism for void growth in ductile metals. This paper reviews the analytical and atomistic calculations carried out in support of this model. The emission of shear dislocation loops, nucleated at the surface of nanosized voids, is responsible for the outward flux of matter, promoting void growth. This is a new paradigm in the initiation of void growth, which was attributed to convergent vacancy diffusion or to prismatic loops by others. The analytical treatment is based on the emission of a dislocation from a void in the plane along which the shear stresses are maximum. Molecular dynamics calculations performed for different orientations of the tensile axis show how the loops generate and expand outward. These loops involve the emission of partial dislocations and are the counterpart for voids of the Ashby geometrically necessary shear loops postulated for rigid particles. This process is demonstrated for bicrystalline and nanocrystalline copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taylor, Proc. Roy. Soc., 145 (1934), p. 362.

    Article  ADS  CAS  Google Scholar 

  2. E. Orowan, Z. Physik, 89(1934), p. 634.

    Article  ADS  Google Scholar 

  3. M. Polanyi, Z. Physik, 89(1934), p. 660.

    Article  ADS  CAS  Google Scholar 

  4. T. von Karman, Enzyklopedie der Mathematischen Wissenschaften, ed. F. Klein and G. Muller, Vol. IV, pt. 4 (Leipzig, Germany: Teubner, 1913), p. 767.

    Google Scholar 

  5. L. Prandtl, Z. Angew. Math. Mech., 8 (1928), p. 85.

    Article  MATH  Google Scholar 

  6. A. Seeger, Mat. Sci. Eng. A, 370 (2004), pp. 50–66.

    Article  CAS  Google Scholar 

  7. R. Becker and E. Orowan, Z. Physik, 79 (1932), p. 566.

    Article  CAS  ADS  Google Scholar 

  8. J.M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42 (1939), pp. 293, 378.

    Google Scholar 

  9. E. Orowan, Proc. Phys. Soc. (London), 52 (1940), p. 8.

    Article  ADS  Google Scholar 

  10. F.C. Frank and W.T. Read, Symposium on Plastic Deformation of Crystalline Solids (Pittsburgh, PA: Carnegie Institute of Technology, 1950), p. 44.

    Google Scholar 

  11. A. Seeger, Z. Naturf., 9A (1954), pp. 758, 819, 856.

    ADS  CAS  MathSciNet  Google Scholar 

  12. P. Hirsch, R.W. Horne, and M.J. Wheelan, Phil. Mag., 1 (1956), p. 677.

    Article  ADS  CAS  Google Scholar 

  13. W.G. Johnson and J.J. Gilman, J. Appl. Phys., 33 (1959), p. 129.

    Article  ADS  Google Scholar 

  14. J. Weertman, J. Appl. Phys., 26 (1955), p. 1213.

    Article  ADS  CAS  Google Scholar 

  15. J. Weertman, J. Appl. Phys., 38 (1967), p. 5293.

    Article  ADS  Google Scholar 

  16. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. (London), A62 (1949), p. 49.

    ADS  Google Scholar 

  17. F.R.N. Nabarro, Proc. Phys. Soc., 59 (1947), p. 256.

    Article  ADS  CAS  Google Scholar 

  18. H. Conrad, J. Metals, 16 (1964), p. 582.

    CAS  Google Scholar 

  19. M.F. Ashby, Phil. Mag., 19 (1969), p. 757.

    Article  ADS  CAS  Google Scholar 

  20. U.F. Kocks, Met. Trans., 1 (1970), pp. 1121–1143.

    Google Scholar 

  21. D. Kuhlmann Wilsdorf, Met. Trans., 11A (1985), p. 2091.

    Google Scholar 

  22. J.P. Hirth and J. Lothe, Theory of Dislocations (New York: McGraw-Hill, 1968).

    Google Scholar 

  23. F.J. Zerilli and R.W. Armstrong, J. Appl. Phys., 61 (1987), p. 1816.

    Article  ADS  CAS  Google Scholar 

  24. L.B. Freund, J. Appl. Mech., 54 (1987), pp. 553–557.

    CAS  Google Scholar 

  25. W.D. Nix, Met. Trans., 20A (1989), pp. 2217–2245.

    CAS  Google Scholar 

  26. J.C.M. Li, Trans. Met. Soc. AIME, 227 (1963), p. 239.

    CAS  Google Scholar 

  27. F. Seitz, Phys. Rev., 79 (1950), p. 723.

    Article  ADS  CAS  Google Scholar 

  28. L.M. Brown, Phil. Mag., 21 (1970), p. 329.

    Article  ADS  CAS  Google Scholar 

  29. J. Silcox and P.B. Hirsch, Phil. Mag., 4 (1958), p. 72.

    Article  ADS  Google Scholar 

  30. F.J. Humphreys and P.B. Hirsch, Proc. Roy. Soc. London, 318 (1970), pp. 73–92.

    Article  ADS  CAS  Google Scholar 

  31. B.P. Uberuaga et al., Phys. Rev. Lett., 99 (2007), p. 135501.

    Article  PubMed  ADS  CAS  Google Scholar 

  32. A.L. Stevens, L. Davison, and W.E. Warren, J. Appl. Phys., 43 (1972), p. 4922.

    Article  ADS  CAS  Google Scholar 

  33. M.A. Meyers and C.T. Aimone, Prog. in Matls. Sci., 28 (1983), p. 1.

    Article  CAS  Google Scholar 

  34. D. Broek, Elementary Engineering Fracture Mechanics (Boston, MA: Martinus Nijhoff Publishers, 1986).

    Google Scholar 

  35. A.M. Cuitiño and M. Ortiz, Acta Mater., 44 (1996), p. 863.

    Article  Google Scholar 

  36. R. Raj and M.F. Ashby, Acta Metal., 23 (1975), p. 653.

    Article  Google Scholar 

  37. V.A. Lubarda et al., Acta Mater., 53 (2004), p. 1397.

    Article  CAS  Google Scholar 

  38. S. Traiviratana et al., Acta Mater., 56 (2008), p. 3874.

    Article  CAS  Google Scholar 

  39. J.R. Rice and R. Thomson, Phil. Mag., A29 (1974), p. 73.

    Article  Google Scholar 

  40. A.L. Gurson, J. Eng. Mat. Tech., 99 (1977), p. 2.

    Google Scholar 

  41. S.J. Plimpton, J. Comp. Phys., 117 (1995), p. 1.

    Article  MATH  ADS  CAS  Google Scholar 

  42. M.S. Daw and M.I. Baskes, Phys. Rev. B, 29 (1984), p. 6443.

    Article  ADS  CAS  Google Scholar 

  43. Y. Mishin et al., Phys. Rev. B, 63 (2001), p. 224106-1.

    Article  ADS  CAS  Google Scholar 

  44. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Phys. Rev. B, 58 (1998), p. 11085.

    Article  CAS  ADS  Google Scholar 

  45. R.E. Rudd and J.F. Belak, Comp. Mater. Sci., 24 (2002), p. 148.

    Article  CAS  Google Scholar 

  46. E.T. Seppälä, J.F. Belak, and R.E. Rudd, Phys. Rev. B, 69 (2004), p. 134101-1–19.

    Article  ADS  CAS  Google Scholar 

  47. E.T. Seppälä, J. Belak, and R.E. Rudd, Phys. Rev. Lett., 93 (2004), p. 245503-1–4.

    Article  ADS  CAS  Google Scholar 

  48. E.T. Seppälä, J. Belak, and R.E. Rudd, Phys. Rev. B, 71 (2005), p. 064112-1–10.

    Article  ADS  CAS  Google Scholar 

  49. J. Marian, J. Knap, and M. Ortiz, Phys. Rev. Lett., 93 (2004), p. 1.

    Article  CAS  Google Scholar 

  50. J. Marian, J. Knap, and M. Ortiz, Acta Mater., 53 (2005), p. 2893.

    Article  CAS  Google Scholar 

  51. S.G. Srinivasan, M.I. Baskes, and G.J. Wagner, J. Mater. Sci., 41 (2006), p. 7838.

    Article  CAS  ADS  Google Scholar 

  52. D.C. Ahn et al., Appl. Phys., 101 (2007), p. 063514-1–6.

    Google Scholar 

  53. G.P. Potirniche et al., Int. J. Plasticity, 22 (2006), p. 257.

    Article  MATH  CAS  Google Scholar 

  54. W. Zhu et al., Phys. Rev. B, 75 (2007), p. 024104-1.

    ADS  Google Scholar 

  55. L.P. Davila et al., Appl. Phys. Lett., 86 (2005), p. 161902.

    Article  ADS  CAS  Google Scholar 

  56. H. van Swygenhoven, M. Spaczer, and A. Caro, Acta Mat., 47 (1999), p. 561.

    Google Scholar 

  57. S. Christy, H.-R. Pak, and M.A. Meyers, Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (New York: Marcel Dekker, 1986), pp. 835–863.

    Google Scholar 

  58. F.C. Frank and J.H. van der Merwe, Proc. Roy. Soc., A198 (1949), pp. 205, 216.

    ADS  Google Scholar 

  59. J.H. van der Merwe, J. Appl. Phys., 34 (1963), pp. 123–127.

    Article  ADS  Google Scholar 

  60. H. Mughrabi, Mat. Sci. Eng., 33 (1978), p. 207.

    Article  CAS  Google Scholar 

  61. E. Kröner, Zeitsch. Fur Physik, 151 (1958), p. 504.

    Article  ADS  Google Scholar 

  62. J.R. Rice, J. Mech. Phys. Sol., 40 (1992), p. 239.

    Article  ADS  CAS  Google Scholar 

  63. V.V. Stegailov and A.V. Yanilkin, Shock Compression of Condensed Matter-2007 (College Park, MD: American Physical Society, 2008), pp. 329–334.

    Google Scholar 

  64. V.V. Stegailov et al., Shock Compression of Condensed Matter-2007 (College Park, MD: American Physical Society, 2008), pp. 339–342.

    Google Scholar 

  65. G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Materials Research, 6 (1991), pp. 1012–1027.

    Article  ADS  CAS  Google Scholar 

  66. J. Shiøtz, F.D. Di Zolla, and K.W. Jacobsen, Nature, 391 (1998), p. 561.

    Article  ADS  Google Scholar 

  67. W.G. Wolfer, Philos. Mag. A, 58 (1988), p. 285.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Bringa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Traiviratana, S., Lubarda, V.A. et al. The role of dislocations in the growth of nanosized voids in ductile failure of metals. JOM 61, 35–41 (2009). https://doi.org/10.1007/s11837-009-0025-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0025-7

Keywords

Navigation