Skip to main content
Log in

Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities

  • Materials Issues in Nuclear Reactors / Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nuclear plant life extension to 80 years will require accurate predictions of neutron irradiation-induced increases in the ductile-brittle transition temperature (ΔT) of reactor pressure vessel steels at high fluence conditions that are far outside the existing database. Remarkable progress in mechanistic understanding of irradiation embrittlement has led to physically motivated ΔT correlation models that provide excellent statistical fits to the existing surveillance database. However, an important challenge is developing advanced embrittlement models for low flux-high fluence conditions pertinent to extended life. These new models must also provide better treatment of key variables and variable combinations and account for possible delayed formation of “late blooming phases” in low copper steels. Other issues include uncertainties in the compositions of actual vessel steels, methods to predict ΔT attenuation away from the reactor core, verification of the master curve method to directly measure the fracture toughness with small specimens and predicting ΔT for vessel annealing remediation and re-irradiation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Eason et al., A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels (Oak Ridge, TN: Oak Ridge National Laboratory, 2007), ORNL/TM-2006/530.

    Google Scholar 

  2. G.R. Odette and G.E. Lucas, JOM, 53(7) (2001), p. 18.

    Article  CAS  Google Scholar 

  3. R.K. Nanstad, M.A. Sokolov, and D.E. McCabe, “Applicability of the Fracture Toughness Master Curve to Irradiated Highly Embrittled Steel and Intergranular Fracture,” J. ASTM Int., 5(3) (2008), Paper ID JAI101346. Available online at www.astm.org .

  4. U.S. Nuclear Regulatory Commission, Radiation Embrittlement of Reactor Vessel Materials, Regulatory Guide 1.99, Revision 2 (Washington, D.C.: U.S. Nuclear Regulatory Commission, 1988).

    Google Scholar 

  5. G.R. Odette, Script. Met., 17 (1983), p. 1183.

    Article  CAS  Google Scholar 

  6. G.R. Odette et al., The Irradiation Variables (IVAR) Program Database on Irradiation Induced Yield and Ultimate Tensile Stress Changes in Reactor Pressure Vessel Steels, UCSB MRPG PV1-2009 (Santa Barbara, CA: UES Materials Reliability and Performance Group, UCSB, 2009).

    Google Scholar 

  7. G.R. Odette and G.E. Lucas, Radiation Effects and Defects in Solids, 144(1–4) (1998), p. 189.

    Article  CAS  ADS  Google Scholar 

  8. M. EricksonKirk, “A Review of ΔT30 Data for Reactor Pressure Vessel Steels Obtained at High Fluences,” J. ASTM Intl. (West Conshohocken, PA: ASTM Intl., 2009), JAI102000-8.

    Google Scholar 

  9. G.R. Odette, Microstructural Evolution During Irradiation, MRS Symp. Proc. 373 (Warrendale, PA: Materials Research Society, 1995), p. 137.

    Google Scholar 

  10. G.R. Odette, Irradiation Effects on Pressure Vessel Steels, IAEA IRRWG-LMNPP-98-3 (Vienna, Austria: International Atomic Energy Agency, 1998), p. 438.

    Google Scholar 

  11. G.R. Odette and B.D. Wirth, J. Nucl. Mat., 251 (1998), p. 157.

    Article  ADS  Google Scholar 

  12. G.R. Odette, T. Yamamoto, and B.D. Wirth, Proceedings of the Second International Conference on Multiscale Modeling (University of California Los Angeles, 2004), p. 105.

  13. M.K. Miller and K.F. Russell, “Embrittlement of RPV Steels: An Atom Probe Tomography Perspective,” J. Nuc. Mat., 37(1–3) (2007), p. 145.

    Article  ADS  CAS  Google Scholar 

  14. M.K. Miller et al., J. Nuc. Mat., 385 (2009), p. 615.

    Article  ADS  CAS  Google Scholar 

  15. J.M. Hyde et al., 20th ASTM International Symposium on Effects of Radiation on Nuclear Materials, ASTM STP 1405 (West Conshohocken, PA: American Society for Testing and Materials, 2001), p. 262.

    Book  Google Scholar 

  16. ASTM Standard E1921-09a, “Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range,” Annual Book of ASTM Standards, Vol. 03.01 (West Conshohocken, PA: ASTM International, 2009).

    Google Scholar 

  17. W.A. Van Der Sluys et al., “Indexing Fracture Toughness Data, Part 1: Results from the MPC Cooperative Test Program on the Use of Precracked Charpy Specimens for T0 Determination,” WRC Bulletin 486 (New York: Welding Research Council, Inc., November 2003).

    Google Scholar 

  18. G.R. Odette, T. Yamamoto, and R.D. Klingensmith, Phil. Mag., 85 (2005), p. 779.

    Article  ADS  CAS  Google Scholar 

  19. G.R. Odette et al., 16th International Symposium on the Effects of Radiation on Materials, ASTM-STP 1175 (West Conshohoken, PA: American Society for Testing and Materials, 1993), p. 373.

    Google Scholar 

  20. E.V. Mader, “Kinetics of Irradiation Embrittlement and the Post-Irradiation Annealing of Nuclear Reactor Pressure Vessel Steels” (Ph.D. Thesis, University of California, Santa Barbara, 1995).

    Google Scholar 

  21. R.K. Nanstad et al., Review of Draft NUREG Report on Technical Basis for Revision of Regulatory Guide 1.99, ORNL/NRC/LTR-08/03 (Oak Ridge, TN: Oak Ridge National Laboratory, 2008).

    Google Scholar 

  22. C.L. Liu et al., Matls. Sci and Eng. A, 238 (1998), p. 202.

    Article  Google Scholar 

  23. W.J. Phythian and C.A. English, J. Nuc. Mat., 205 (1993), p. 162.

    Article  ADS  CAS  Google Scholar 

  24. J.T. Buswell et al., J. Nuc. Mat., 225 (1995), p. 196.

    Article  ADS  CAS  Google Scholar 

  25. G.R. Odette, Microstructure Evolution During Irradiation, MRS Symp. Proc. 439 (Warrendale, PA: Materials Research Society, 1998), p. 457.

    Google Scholar 

  26. B.D. Wirth et al., 18th International Symposium on the Effects of Radiation on Materials, ASTM STP-1325 (West Conshohoken, PA: American Society for Testing and Materials, 1999), p. 102.

    Book  Google Scholar 

  27. R.G. Carter et al., J. Nuc. Mat., 298 (2001), p. 211.

    Article  ADS  CAS  Google Scholar 

  28. S.C. Glade et al., J. Nuc. Mat., 351 (2006), p. 27.

    Article  CAS  Google Scholar 

  29. M.K. Miller et al. J. Nuc. Mat., 361(2–3) (2007), p. 248.

    Article  ADS  CAS  Google Scholar 

  30. G.R. Odette and C. Cowan, “Use of Combined Electrical Resistivity and Seebeck Coefficient Measurements to Characterize Solute Redistribution Under Irradiation and Thermal Aging,” Proceedings of the 10th International Symposium on Environmental Degradation of Materials in Light Water Reactors (Houston, TX: National Association of Corrosion Engineers, 2001).

    Google Scholar 

  31. J.S. Smith, “Characterization of Irradiation and Thermal Aging Induced Solute Redistributions in Reactor Pressure Vessel Steels Using Combined Electrical Resistivity and Seebeck Coefficients” (M.Sc. Thesis, University of California at Santa Barbara, 2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Odette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odette, G.R., Nanstad, R.K. Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities. JOM 61, 17–23 (2009). https://doi.org/10.1007/s11837-009-0097-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0097-4

Keywords

Navigation