Skip to main content
Log in

Flexible film systems: Current understanding and future prospects

  • Thin Films and Coatings
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The electrical and mechanical properties of metal films on polymer Substrates are of interest for use inflexible electronic devices and sensors. In these Systems, film deformation mechanisms are comparable to those from free-standing films but the influence of the Substrate and the Interface on the film properties is yet to be fully understood. This understanding is critical to further design improvements and advanced in situ characterization holds the promise of making this possible. With the aid of such techniques direct Observation of failure and deformation mechanisms has become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OE-A Roadmap for Organic and Printed Electronics, 3rd edition (Frankfurt: Organic Electronics Association, OE-A, 2009).

  2. T. Li et al., Applied Physics Letters, 85 (2004), pp. 3435–3437.

    Article  ADS  CAS  Google Scholar 

  3. H. Muang and F. Spaepen, Acta Materialia, 48 (2000), pp.3261–3269.

    Article  Google Scholar 

  4. D.Y.W. Yu and F. Spaepen, J. Applied Physics, 95 (2004), pp. 2991–2997.

    Article  ADS  CAS  Google Scholar 

  5. M. Mommel and O. Kraft, Acta Materialia, 49 (2001), pp. 3935–3947.

    Article  Google Scholar 

  6. C.A. Volkert and E.T. Lilleodden, Philosophical Magazine, 86 (2006), pp. 5567–5579.

    Article  ADS  CAS  Google Scholar 

  7. M.D. Uchic et al., Science, 305 (2004), pp. 986–989.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Materialia, 53 (2005), pp. 1821–1830; erratum Acta Materialia, 54 (2005), p. 1705.

    Article  CAS  Google Scholar 

  9. D. Kiener, C. Motz, and G. Dehm, J. Materials Science, 43 (2008), pp. 2503–2506.

    Article  ADS  CAS  Google Scholar 

  10. S.P. Lacour et al., Applied Physics Letters, 82 (2003), pp. 2404–2406.

    Article  ADS  CAS  Google Scholar 

  11. S. Wagner et al., Physica E, 25 (2004), pp. 326–334.

    Article  ADS  Google Scholar 

  12. S.P. Lacour et al., J. Applied Physics, 100 (2006), pp. 14913–1.

    Article  ADS  CAS  Google Scholar 

  13. S.P. Lacour et al., Proceedings of the IEEE, 93 (2005), pp. 1459–1467.

    Article  CAS  Google Scholar 

  14. S.P. Lacour, C. Tsay, and S. Wagner, IEEE Electron Device Letters, 25 (2004), pp. 792–794.

    Article  ADS  Google Scholar 

  15. G. Eda et al., Nature Nanotechnology, 3 (2008), pp. 270–274.

    Article  PubMed  CAS  Google Scholar 

  16. S.H. Ko et al., Nanotechnology, 18 (2007), 345202.

    Article  ADS  CAS  Google Scholar 

  17. E. Manard et al., Applied Physics Letters, 84 (2004), pp. 5398–5400.

    Article  ADS  CAS  Google Scholar 

  18. R.A Street et al., Materials Today, 9 (2006), pp. 32–37.

    Article  CAS  Google Scholar 

  19. S.R. Forrest, Nature, 428 (2004), pp. 977–918.

    Article  CAS  Google Scholar 

  20. J.A. Rogers et al., PNAS, 98 (2001), pp. 4835–4840.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Z. Bao, Advanced Materials, 12 (2000), pp. 227–230.

    Article  CAS  Google Scholar 

  22. H. Jiang et al., Int. J. Solids Struct., 45 (2000) pp. 2014–2023.

    Article  Google Scholar 

  23. J. Song et al., J. Vac. Sei. Technol. A, 27 (2009), pp. 1107–1125.

    Article  CAS  Google Scholar 

  24. C. Tsay et al., Mater. Res. Soc. Symp. Proc., 875 (2005), pp. 05.5.1.

    Google Scholar 

  25. J. Yoon et al., Applied Physics Letters, 90 (2007), 211912.

    Article  ADS  CAS  Google Scholar 

  26. N. Lu et al., Applied Physics Letters, 91 (2007), 221909.

    Article  ADS  CAS  Google Scholar 

  27. N. Lu et al., J. Materials Research, 24(2) (2009), pp. 379–385.

    Article  ADS  CAS  Google Scholar 

  28. M.B. Tucker and T. Li, Int’l. J. Applied Mechanics, 1 (2009), pp. 557–568.

    Article  Google Scholar 

  29. S. P. Lacour et al., Applied Physics Letters, 88 (2006), 204103.

    Article  ADS  CAS  Google Scholar 

  30. Y. Xiang, T.Y. Tsui, and J.J. Vlassak, J. Materials Research, 21 (2006), pp. 1607–1618.

    Article  ADS  CAS  Google Scholar 

  31. R.P Vinci and J.J. Vlassak, Annual Review of Materials Science, 26 (1996), pp. 431–462.

    Article  ADS  CAS  Google Scholar 

  32. D. Son, J. Jeong, and D. Kwon, Thin Solid Films, 437 (2003), pp.182–187.

    Article  ADS  CAS  Google Scholar 

  33. H.D. Espinosa, B.C. Prorok, and M. Fischer, J, Mechanics and Physics of Solids, 51 (2003), pp. 47–67.

    Article  ADS  CAS  Google Scholar 

  34. P.A. Gruber et al., Acta Materialia, 56 (2008), pp. 2318–2335.

    Article  MathSciNet  CAS  Google Scholar 

  35. T. Li et al., Mechanics of Materials, 37 (2005), pp. 261–273.

    Article  ADS  Google Scholar 

  36. Y. Xiang et al., Applied Physics Letters, 87 (2005), pp. 161910-1–3.

    ADS  Google Scholar 

  37. A. Ishida and M. Sato, Thin Solid Films, 516 (2008), pp. 7836–7839.

    Article  ADS  CAS  Google Scholar 

  38. F. Zeng et al., J. Alloys and Compounds, 477 (2009), pp. 239–242.

    Article  ADS  CAS  Google Scholar 

  39. J.D. Yeager et al., J. Neuroscience Methods, 173 (2008), pp. 279–285.

    Article  Google Scholar 

  40. M.J. Cordill et al., Metallurgical and Materials Transactions A, 41 (2009) pp. 870–875.

    Article  ADS  CAS  Google Scholar 

  41. G. Rochat et al., Thin Solid Films, 437 (2003), pp. 204–210.

    Article  ADS  CAS  Google Scholar 

  42. N.E. Jansson, Y. Leterrier, and J.A.E. Manson, Engineering Fracture Mechanics, 37 (2006), pp. 2614–2626.

    Article  Google Scholar 

  43. N.E. Jansson et al., Thin Solid Films, 515 (2006), pp. 2097–2105.

    Article  ADS  CAS  Google Scholar 

  44. J. Andersons et al., Mechanics of Materials, 39 (2007), pp. 834–844.

    Article  Google Scholar 

  45. J. Andersons, S. Tarasovs, and Y. Leterrier, Thin Solid Films, 517 (2009), pp. 2007–2011.

    Article  ADS  CAS  Google Scholar 

  46. Y. Leterrier, Progress in Materials Science, 48 (2003), pp. 1–55.

    Article  CAS  Google Scholar 

  47. S. Frank et al., Acta Materialia, 57 (2009), pp. 1442–1453.

    Article  CAS  Google Scholar 

  48. A. Kelly and W.R. Tyson, J. Mechanics and Physics of Solids, 13 (1965), pp. 329–350.

    Article  ADS  CAS  Google Scholar 

  49. M.J. Cordill et al., Acta Materialia, (2009) submitted.

  50. N. Tamura et al., J. Synchrotron Radiation, 10 (2003), pp. 137–143.

    Article  CAS  Google Scholar 

  51. C.H. Ma, J.H. Huang, and H. Chen, Thin Solid Films, 418 (2002), pp. 73–78.

    Article  ADS  CAS  Google Scholar 

  52. K.J. Martinschitz et al., Thin Solid Films, 516 (2008), pp. 1972–1976.

    Article  ADS  CAS  Google Scholar 

  53. E. Eiper et al., Acta Materialia, 55 (2007), pp. 1941–1946.

    Article  CAS  Google Scholar 

  54. G. Dehm et al., Microelectronic Engineering, 70 (2003), pp. 412–424.

    Article  CAS  Google Scholar 

  55. T.J. Balk, G. Dehm, and E. Arzt, Acta Materialia, 51 (2003), pp. 4471–4485.

    Article  CAS  Google Scholar 

  56. A. Taylor et al., unpublished research (2009).

  57. S.H. Oh et al., Nature Materials, 8 (2009), pp. 95–100.

    Article  PubMed  ADS  CAS  Google Scholar 

  58. G. Dehm, M. Legros, and B. Heiland, J. Materials Science, 41 (2006), pp. 4484–4489.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan J. Cordill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordill, M.J. Flexible film systems: Current understanding and future prospects. JOM 62, 9–14 (2010). https://doi.org/10.1007/s11837-010-0096-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0096-5

Keywords

Navigation