Skip to main content
Log in

Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles

  • Structural, Functional, and Biological thin Films
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microneedles are small-scale needle-like projections that may be used for transdermal delivery of pharmacologic agents, including protein-containing and nucleic acid-containing agents. Commercial translation of polymeric microneedles would benefit from the use of facile and cost effective fabrication methods. In this study, visible light dynamic mask microstereolithography, a rapid prototyping technique that utilizes digital light projection for selective polymerization of a liquid resin, was used for fabrication of solid microneedle array structures out of an acrylate-based polymer. Pulsed laser deposition was used to deposit silver and zinc oxide coatings on the surfaces of the visible light dynamic mask microstereolithography-fabricated microneedle array structures. Agar diffusion studies were used to demonstrate the antimicrobial activity of the coated microneedle array structures. This study indicates that light-based technologies, including visible light dynamic mask microstereolithography and pulsed laser deposition, may be used to fabricate microneedles with antimicrobial properties for treatment of local skin infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Cornia et al., Expert Opinion on Pharmacotherapy, 9 (2008), pp. 717–730.

    Article  CAS  Google Scholar 

  2. E.V. Ki and C. Rotstein, Canadian Journal of Infectious Disease and Medical Microbiology, 19 (2008), pp. 173–184.

    Google Scholar 

  3. M.E. Jones et al., International Journal of Antimicrobial Agents, 22 (2003), pp. 406–419.

    Article  CAS  Google Scholar 

  4. R. Durai et al., AORN Journal, 91 (2010), pp. 599–606.

    Article  Google Scholar 

  5. K.K.Y. Wong and X. Liu, Med. Chem. Comm., 1 (2010), pp. 125–131.

    Article  CAS  Google Scholar 

  6. M.E. Samberg et al., Environmental Health Perspectives, 118 (2010), pp. 407–413.

    Article  CAS  Google Scholar 

  7. M.E. Samberg et al., Nanotoxicology, in press (doi: 10.3109/17435390.2010.525669).

  8. P.L. Nadworny and R.E. Burrell, J. Wound Technology, 2 (2008), pp. 6–12.

    Google Scholar 

  9. M. Schaller et al., Skin Pharmacology & Physiology, 17 (2004), pp. 31–36.

    Article  CAS  Google Scholar 

  10. M. Bhattacharyya and H. Bradley, Int. J. Lower Extremity Wounds, 7 (2008), pp. 45–48.

    Article  Google Scholar 

  11. C.E. Schnopp et al., Expert Opinion on Pharmacotherapy, 11 (2010), pp. 929–936.

    Article  CAS  Google Scholar 

  12. T. Jun et al., Chemmedchem, 2 (2007), pp. 129–136.

    Article  Google Scholar 

  13. X.L. Liu et al., Chemmedchem, 5 (2010), pp. 468–475.

    Article  CAS  Google Scholar 

  14. J.B. Wright et al., Wound Repair and Regeneration, 10 (2002), pp. 141–151.

    Article  Google Scholar 

  15. D.M. Elston, Dermatologic Clinics, 27 (2009), pp. 25–31.

    Article  CAS  Google Scholar 

  16. A.B.G. Lansdown et al., Wound Repair and Regeneration, 15 (2007), pp. 2–16.

    Article  Google Scholar 

  17. S. Atmaca et al., Turkish Journal of Medical Sciences, 28 (1998), pp. 595–597.

    CAS  Google Scholar 

  18. J. Sawai, J. Fermentation and Bioengineering, 86 (1998), pp. 521–522.

    Article  CAS  Google Scholar 

  19. Y. Liu et al., J. Applied Microbiology, 107 (2009), pp. 1193–1201.

    Article  CAS  Google Scholar 

  20. Z. Huang et al., Langmuir, 24 (2008), pp. 4140–4144.

    Article  CAS  Google Scholar 

  21. H. Akiyama et al., J. Dermatological Science, 17 (1998), pp. 67–74.

    Article  CAS  Google Scholar 

  22. M. S. Agren et al., European Journal of Surgery 157 (1991), pp. 97–101.

    CAS  Google Scholar 

  23. T. Soderberg et al., Infection, 17 (1989), pp. 81–85.

    Article  CAS  Google Scholar 

  24. E.F. Rostan et al., Int. J. Dermatology, 41 (2002), pp. 606–611.

    Article  CAS  Google Scholar 

  25. M.S. Agren et al., J. Wound Care, 13 (2004), pp. 367–369.

    CAS  Google Scholar 

  26. M.S. Agren et al., Wound Repair and Regeneration, 14 (2006), pp. 526–535.

    Article  Google Scholar 

  27. S.D. Gittard and R.J. Narayan, in Toxicology of the Skin, ed. N.A. Monteiro-Riviere (New York: Informa Healthcare, 2010), pp. 301–316.

    Google Scholar 

  28. S.D. Gittard et al., Expert Opinion on Drug Delivery (2010), pp. 513–533.

  29. M.I. Haq et al., Biomedical Microdevices, 11 (2009), pp. 35–47.

    Article  CAS  Google Scholar 

  30. S.M. Bal et al., European Journal of Pharmaceutical Sciences, 35 (2008), pp. 193–202.

    Article  CAS  Google Scholar 

  31. R.K. Sivamani et al., Skin Research and Technology, 11 (2005), pp. 152–156.

    Article  Google Scholar 

  32. H.S. Gill et al., Clinical Journal of Pain, 24 (2008), pp. 585–594.

    Article  Google Scholar 

  33. R.F. Donnelly et al., Pharmaceutical Research, 26 (2009), pp. 2513–2522.

    Article  CAS  Google Scholar 

  34. S. Doddaballapur, J. Cutaneous and Aesthetic Surgery, 2 (2009), pp. 110–111.

    Article  Google Scholar 

  35. I. Majid, J. Cutaneous and Aesthetic Surgery, 2 (2009), pp. 26–30.

    Article  Google Scholar 

  36. B.S. Chandrashekar and A.S. Nandini, J. Cutaneous and Aesthetic Surgery, 3 (2010), pp. 125–126.

    Google Scholar 

  37. E.M. Lane, U.S. patent application 20080085301A1 (2008).

  38. S.D. Gittard et al., Biofabrication, 1 (2009), pp. 041001.

    Article  CAS  Google Scholar 

  39. S.D. Gittard et al., Advanced Engineering Materials, 12 (2010), pp. 77–82.

    Google Scholar 

  40. C. Sun et al., Sensors and Actuators, A121 (2005), pp. 113–120.

    CAS  Google Scholar 

  41. J.A. Covington et al., IET Nanobiotechnology, 1 (2007), pp. 115–121.

    Article  Google Scholar 

  42. M.E. Snowden et al., Analytical Chemistry, 82 (2010), pp. 3124–3131.

    Article  CAS  Google Scholar 

  43. J. Stampfl et al., J. Micromechanics and Microengineering, 18 (2008), pp. 125014.

    Article  Google Scholar 

  44. A. Neumeister et al., J. Laser Micro/Nanoengineering, 3 (2008), pp. 67–72.

    Article  CAS  Google Scholar 

  45. J.W. Choi et al., J. Mechanical Science and Technology, 20 (2006), pp. 2094–2104.

    Article  Google Scholar 

  46. I. Park et al., Int. J. Advanced Manufacturing Technology, 46 (2010), pp. 151–161.

    Article  Google Scholar 

  47. P.R. Miller et al., Biomicrofluidics, doi:10.1063/1.3569945.

  48. I. Park et al., Int. J. Precision Engineering and Manufacturing, 11 (2010), pp. 483–490.

    Article  Google Scholar 

  49. S.D. Gittard et al., Biotechnology Journal, 4 (2009), pp. 129–134.

    Article  CAS  Google Scholar 

  50. L.H. Han et al., J. Manufacturing Science and Engineering, 130 (2008), pp. 021005.

    Article  Google Scholar 

  51. J.W. Choi et al., J. Materials Processing Technology, 209 (2009), pp. 5494–5503.

    Article  CAS  Google Scholar 

  52. O. Yasar et al., Biofabrication, 1 (2009), pp. 045004.

    Article  Google Scholar 

  53. M.L. Morrison et al., Diamond and Related Materials, 15 (2005), pp. 138–146.

    Article  Google Scholar 

  54. J.M. Warrender and M. Aziz, Physical Review B, 75 (2007), pp. 085433.

    Article  Google Scholar 

  55. P.R. Willmott, Progress in Surface Science, 76 (2004), pp. 163–217.

    Article  CAS  Google Scholar 

  56. J.M. Lackner et al., Surface and Coating Technology, 188–189 (2004), pp. 519–524.

    Article  Google Scholar 

  57. S.D. Gittard et al., Applied Surface Science, 255 (2009), pp. 5806–5811.

    Article  CAS  Google Scholar 

  58. Technical Data: envisionTEC e-Shell 200 Series. http://www.envisiontec.de/fileadmin/pdf/MatSheet_eShell200_en_s.pdf (Retrieved 27 January 2011).

  59. S.D. Gittard et al., J. Diabetes Science and Technology, 3 (2009), pp. 304–311.

    Google Scholar 

  60. General Discussion, Faraday Discussions, 14 (2011), pp. 227–245 (DOI:10.1039/C0FD90010A).

    Google Scholar 

  61. C. Sun et al., Sensors and Actuators A, 121 (2005), pp. 113–120.

    Article  Google Scholar 

  62. M. Miwa et al., Applied Physics A, 73 (2001), pp. 561–566.

    Article  CAS  Google Scholar 

  63. A. Ovsianikov et al., Acta Biomaterialia, 7 (2011), pp. 967–974.

    Article  CAS  Google Scholar 

  64. J.H. Park et al., IEEE Transactions in Biomedical Engineering, 54 (2007), pp. 903–913.

    Article  Google Scholar 

  65. H.S. Gill and M.R. Prausnitz, J. Controlled Release, 117 (2007), pp. 227–237.

    Article  CAS  Google Scholar 

  66. J.H. Choi et al., J. Crystal Growth, 226 (2001), pp. 493–500.

    Article  CAS  Google Scholar 

  67. M.J. Aziz, Applied Physics A, 93 (2008), pp. 579–587.

    Article  CAS  Google Scholar 

  68. J. Sawai et al., J. Chemical Engineering Japan, 28 (1995), pp. 288–293.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gittard, S.D., Miller, P.R., Jin, C. et al. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM 63, 59–68 (2011). https://doi.org/10.1007/s11837-011-0093-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0093-3

Keywords

Navigation