Skip to main content
Log in

The development of a forming limit surface for 5083 aluminum alloy sheet

  • Research Summary
  • Aluminum: Shaping and Forming
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A custom mechanical stretching setup based on the Nakazima method was designed and built for testing sheet metals at elevated temperatures. Specimens from a fine-grained 5083 aluminum alloy sheet were deformed at various temperatures, spanning between those associated with warm forming (250°C) and hot forming (550°C). Circle grid analysis of the deformed specimens produced the forming limit curves at each of the covered temperatures, hence revealing the great influences of forming temperature on the material’s formability limits. Finally, all the curves were combined to construct a unique three-dimensional forming limit surface, which we present here as a more comprehensive map for describing material formability limits at wide-ranging temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Keeler and W.A. Backhofen, Transactions of American Society of Metals, 56 (1963), pp. 25–48.

    Google Scholar 

  2. “Standard Test Method for Determining Forming Limit Curves,” ASTM E 2218-02 (West Conshohocken, PA: ASTM, 2002).

  3. Z. Marciniak and Z. Kuczynski, Int. J. Mechanical Sciences, 9 (1967), pp. 609–620.

    Article  Google Scholar 

  4. K. Nakazima, T, Kikuma, and K. Asuka, “Study on the Formability of Steel Sheet,” Yawata Technical Report No. 264 (1971), pp. 678–680.

  5. R.A. Ayres, Novel Techniques in Metal Deformation Testing, ed. R.H. Wagoner (Warrendale, PA: TMS, 1983), pp. 47–64.

    Google Scholar 

  6. “Metallic Materials-Guidelines for the Determination of Forming Limit Diagrams,” ISO 12004.

  7. A.K. Ghosh and S.S. Hecker, Metall. Trans., 5 (1974), pp. 2161–2164.

    Article  CAS  Google Scholar 

  8. B. Taylor, Sheet Formability Testing, Metals Handbook, 9th ed., Vol. 8: Mechanical Testing (Materials Park, OH: American Society for Metals, 1985), pp. 547–570.

    Google Scholar 

  9. W.F. Hosford and J.L. Duncan, JOM, 51(11) (1999), pp. 39–44.

    Article  Google Scholar 

  10. T. Foecke, S.W. Banovic, and R.J. Fields, JOM, 53(02) (2001), pp. 27–30.

    Article  CAS  Google Scholar 

  11. E. Doege and K. Dröder, J. Mater. Proc. Technol., 115 (2001), pp. 14–19.

    Article  CAS  Google Scholar 

  12. D. Li and A. Ghosh, J. Mater. Proc. Technol., 145 (2004), pp. 281–293.

    Article  CAS  Google Scholar 

  13. S. Toros, F. Ozturk, and I. Kacar, J. Mater. Proc. Technol., 207 (2008), pp. 1–12.

    Article  CAS  Google Scholar 

  14. M. Rashid, C. Kim, E. Ryntz, F. Saunders, R. Verma, and K. Sooho, “Quick Plastic Forming of Aluminum Alloy Sheet Metal,” U.S. patent 6 253 588 (2001).

  15. P. Krajewski and J. Schroth, Mater. Sci. Forum, 551 552 (2007), pp. 3–12.

    Article  Google Scholar 

  16. L. Hector, P. Krajewski, E. Taleff, and J. Carter, Key Engineering Materials, 433 (2010), pp. 197–210.

    CAS  Google Scholar 

  17. T. Naka, G. Torikai, R. Hino, and F. Yoshida, J. Mater. Proc. Technol., 113 (2001), pp. 648–653.

    Article  CAS  Google Scholar 

  18. F.K. Chen and T.B. Huang, J. Mater. Proc. Technol., 142 (2003), pp. 643–647.

    Article  CAS  Google Scholar 

  19. Y. Chino, H. Iwasaki, and M. Mabuchi, Mater. Sci. and Eng. A, 466 (2007), pp. 90–95.

    Article  Google Scholar 

  20. E. Hsu, J. Carsley, and R. Verma, J. Mater. Eng. and Performance, 17(3) (2008), pp. 288–296.

    Article  CAS  Google Scholar 

  21. F. Abu-Farha and B. Deeter, “Sheet Orientation Effects on the Formability Limits of the AZ31B Magnesium Alloy at SPF Conditions” (paper presented at the 6th International Manufacturing Science and Engineering Conference (MSEC 2011), Corvallis, OR, 13–17 June 2011), Paper No. MSEC2011-50177.

  22. F. Abu-Farha and L. Hector, Jr., ASME J. Mfg. Sci. and Eng. (2011), DOI: 101115/14004850.

  23. K.C. Chan and K.K. Chow, Int. J. Mech. Sci., 44 (2002), pp. 1467–1478.

    Article  Google Scholar 

  24. D. Banabic, M. Vulcan, and K. Siegert, CIRP Annals-Manufacturing Technology, 54 (2005), pp. 205–208.

    Article  Google Scholar 

  25. Y. Luo, C. Miller, G. Luckey, P. Friedman, and Y. Peng, J. Mater. Eng. and Performance, 16(3) (2007), pp. 274–283.

    Article  CAS  Google Scholar 

  26. M. Kulas, P. Krajewski, J. Bradley, and E. Taleff, J. Mater. Eng. and Performance, 16(3) (2007), pp. 308–313.

    Article  CAS  Google Scholar 

  27. M. Kulas, P. Krajewski, J. Bradley, and E. Taleff, Mater. Sci. Forum, 551-552 (2007), pp. 129–134.

    Article  CAS  Google Scholar 

  28. F. Abu-Farha, N. Shuaib, M. Khraisheh, and K. Weinmann, CIRP Annals Manufacturing Technology, 57 (2008), pp. 275–278.

    Article  Google Scholar 

  29. F. Abu-Farha, L. Hector, and P. Krajewski, “Forming Limit Curves for the AA5083 Alloy under Quick Plastic Forming Conditions” (Warrendale, PA: SAE, 2011), SAE Paper No. 2011-01-0235.

    Book  Google Scholar 

  30. S.B. Leen, M.A. Kröhn, and T.H. Hyde, Materialwissenschaft und Werkstofftechnik, 39(4–5) (2008), pp. 327–331.

    Article  CAS  Google Scholar 

  31. M.A. Kröhn, S.B. Leen, and T.H. Hyde, J. Mater. Design and Appl. (2007), pp. 251–264.

  32. K. Siegert, S. Jäger, and M. Vulcan, CIRP Annals Manufacturing Technology, 52 (2003), pp. 241–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abu-Farha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Farha, F. The development of a forming limit surface for 5083 aluminum alloy sheet. JOM 63, 72–78 (2011). https://doi.org/10.1007/s11837-011-0194-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0194-z

Keywords

Navigation