Skip to main content

Advertisement

Log in

Heavy Liquid Metal Corrosion of Structural Materials in Advanced Nuclear Systems

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interest in advanced nuclear concepts using liquid metal coolant has increased in the past few years. Liquid metal coolants have been proposed for the next generation of small-sized nuclear reactors, which offer exceptional safety and reliability, sustainability, nonproliferation, and economic competitiveness. Heavy liquid metal coolants are investigated for advanced fast reactors that operate at high temperatures, reaching high efficiencies. Lead and lead-bismuth eutectic (LBE) coolants are also proposed as coolants and targets of accelerator driven systems. High temperature, corrosive environment, high fast neutron flux, high fluence, and radiation damage, among other physical phenomena, challenge the integrity of materials in these advanced systems. Excellent compatibility with the liquid coolant is recognized as a key factor in the selection of structural materials for advanced concepts. In this article, we review materials requirements for heavy metal cooled systems with emphasis on lead and LBE materials corrosion properties. We describe experimental corrosion tests currently ongoing at the Los Alamos National Laboratory (LANL) Development of Lead Alloy Technical Applications (DELTA) loop. DELTA is a facility designed to study the long-term corrosive effects of LBE on structural materials under relevant conditions of chemistry, flow, and temperature. The research studies will provide data of corrosion rates and corrosion mechanisms in selected steel exposed to high velocity (above 2 m/s) in flowing LBE at 500°C. Fundamental research studies will help support conceptual design efforts and further the development of heavy liquid metals technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Advances Reactor Research and Development, Funding Opportunity Number DE-FOA-0000818 (Idaho Falls, ID: U. S. Department of Energy, Idaho Operations Office, 2013), https://www.fedconnect.net/FedConnect/PublicPages/PublicSearch/Public_Opportunities.aspx.

  2. Advanced Reactor Concepts, Technical Review Panel ReportEvaluation and Identification of Future R&D on Eight Advanced Reactor Concepts, TRP Report Final, December 2012, http://energy.gov/ne/downloads/advanced-reactor-concepts-technical-review-panel-report.

  3. B.S. Triplett, E.P. Loewen, and B.J. Dooies, Nucl. Technol. 178, 186 (2012).

    Google Scholar 

  4. N. Ueda, I. Kinoshita, A. Minato, S. Kasai, T. Yokoyama, and S. Maruyama, Prog. Nucl. Energ. 47, 222 (2005).

    Article  Google Scholar 

  5. Gen4 Energy, 2012 Gen4 Energy, Inc. http://www.gen4energy.com.

  6. G. Van Goethem, J. Pressure Vessel Technol. 133, 1 (2011).

    Google Scholar 

  7. U.S. Nuclear Regulatory Commission (USNRC), 20092010 Information Digest, NUREG-1350, Vol. 21 (Washington, DC: Office of Public Affairs, 2009), http://www.nrc.gov/reactors/operating.html.

  8. J.N. Reyes, Nucl. Technol. 178, 153 (2012).

    Google Scholar 

  9. J.A. Halfinger and M.D. Haggery, Nucl. Technol. 178, 164 (2012).

    Google Scholar 

  10. Y. Tsuboi, K. Arie, N. Ueda, T. Grenci, and A.M. Yacout, Nucl. Technol. 178, 201 (2012).

    Google Scholar 

  11. Y. Tsuboi, K. Arie, and T. Grenci, Trans. Am. Nucl. Soc. 102, 569 (2010).

    Google Scholar 

  12. E. Greenspan and N. Brown, Small Innovative Reactor DesignsUseful Attributes and Status of Technology (Houston, TX: The Center for Int. Political Economy and The J.A. Baker III Inst. for Public Policy, Rice University, 2001).

  13. V. Sobolev, J. Nucl. Mater. 362, 235 (2007).

    Article  Google Scholar 

  14. IAEA Nuclear Energy Series, Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead and Lead-Bismuth Eutectic, NP-T-1.6, STI/PUB/156 (Vienna, Austria: International Atomic Energy Agency, 2012).

  15. L. Cinotti, C.F. Smith, H. Sekimoto, L. Mansani, M. Reale, and J.J. Sienicki, J. Nucl. Mater. 415, 245 (2011).

    Article  Google Scholar 

  16. A. Alemberti, J. Carlsson, E. Malambu, A. Orden, L. Cinotti, D. Struwe, P. Agostini, and S. Monti, J. Nucl. Sci. Technol. 48, 479 (2011).

    Article  Google Scholar 

  17. E.O. Adamov, I.K.H. Ganev, A.V. Lopatkin, V.V. Orlov, and V.S. Smirnov, Nucl. Eng. Des. 198, 199 (2000).

    Article  Google Scholar 

  18. Y.G. Dragunov, V.V. Lemekhov, V.S. Smirnov, and N.G. Chernetsov, Atom. Energ. 113, 70 (2012).

    Article  Google Scholar 

  19. S.N. Bozin, B.S. Rodchenkov, A.D. Kashtanov, V.G. Markov, V.A. Yakovlev, I.A. Schenkova, Y.A. Ivanov, A.G. Ioltukhovskiy, and M.V. Leont’eva-Smirnova, Atom. Energ. 113, 320 (2013).

    Google Scholar 

  20. H. Ait Abderrahim, T. Aoust, E. Malambu, V. Sobolev, K. Van Tichelen, D. De Bruyn, D. Maes, W. Haeck, and G. Van den Eynde, Radiat. Prot. Dosim. 116, 433 (2005).

    Article  Google Scholar 

  21. H. Ait Abderrahim, P. Baeten, D. De Bruyn, J. Heyse, P. Schuurmans, and J. Wagemans, Nucl. Phys. News 20, 24 (2010).

    Article  Google Scholar 

  22. E. Greenspan, S. Gi Hong, K. Bog Lee, L. Monti, T. Okawa, A. Susplugas, M. Fratoni, L. Kim, S. Mattafirri, and R. Petroski, Prog. Nucl. Energ. 50, 129 (2008).

    Article  Google Scholar 

  23. E. Greenspan and the ENHS Project Team, Prog. Nucl. Energ. 40, 431 (2002).

  24. J. Wallenius, E. Suvdantsetseg, and A. Fokau, Nucl. Technol. 177, 303 (2012).

    Google Scholar 

  25. C.F. Smith, W.G. Halsey, N.W. Brown, J.J. Sienicki, A. Moisseytev, and D.C. Wade, J. Nucl. Mater. 376, 255 (2008).

    Article  Google Scholar 

  26. S. Bortot, A. Moisseytev, J.J. Sienicki, and C. Artioli, Nucl. Eng. Des. 241, 3021 (2011).

    Article  Google Scholar 

  27. LC-E-SSTAR, lakeChime PPRS, Inc., www.lakechime.com.

  28. G.I. Toshinsky, O.G. Komlev, and K.G. Mel’nikov, Prog. Nucl. Energ. 53, 782 (2011).

    Article  Google Scholar 

  29. A.V. Zrodnikov, G.I. Toshinsky, O.G. Komlev, Y.G. Dragunov, V.S. Stepanov, N.N. Klimov, V.N. Generalov, I.I. Kopytov, and V.N. Krushelnitsky, Prog. Nucl. Energ. 50, 170 (2008).

    Article  Google Scholar 

  30. A.V. Zrodnikov, G.I. Toshinsky, O.G. Komlev, V.S. Stepanov, and N.N. Klimov, J. Nucl. Mater. 415, 237 (2011).

    Article  Google Scholar 

  31. T.J. Trapp, P. Peterson, P. McClure, R. Kapernick, and D. Poston, Trans. Am. Nucl. Soc. 102, 365 (2010).

    Google Scholar 

  32. J. Zhang, R.J. Kapernick, P.R. McClure, and D.I. Poston, Trans. Am. Nucl. Soc. 102, 810 (2010).

    Google Scholar 

  33. J. Zhang, P. Hosemann, and S.A. Maloy, J. Nucl. Mater. 404, 82 (2010).

    Article  Google Scholar 

  34. S. Qvist, A. Bolind, P. Hosemann, Y. Wang, J. Tesmer, M. Caro, and M. Bourke, Nucl. Instrum. Methods Phys. Res. Sect. A 698, 98 (2013).

    Article  Google Scholar 

  35. N. Li, Prog. Nucl. Energ. 50, 140 (2008).

    Article  Google Scholar 

  36. N. Li, J. Nucl. Mater. 300, 73 (2002).

    Article  Google Scholar 

  37. B.F. Gromov, Y.S. Belomitcev, E.I. Yefimov, M.P. Leonchuk, P.N. Martinov, Y.I. Orlov, D.V. Pankratov, Y.G. Pashkin, G.I. Toshinsky, V.V. Chekunov, B.A. Shmatko, and V.S. Stepanov, Nucl. Eng. Des. 173, 207 (1997).

    Article  Google Scholar 

  38. L. Soler, F.J. Martın, F. Hernandez, and D. Gomez-Briceno, J. Nucl. Mater. 335, 174 (2004).

    Article  Google Scholar 

  39. G. Benamati, A. Gessi, and P.-Z. Zhang, J. Nucl. Mater. 356, 198 (2006).

    Article  Google Scholar 

  40. A. Weisenburger, C. Schroer, A. Jianu, A. Heinzel, J. Konys, H. Steiner, G. Mueller, C. Fazio, A. Gessi, S. Babayan, A. Kobzova, L. Martinelli, K. Ginestar, F. Balbaud-Celerier, F.J. Martin-Munoz, and L. Soler Crespo, J. Nucl. Mater. 415, 260 (2011).

    Article  Google Scholar 

  41. P. Hosemann, C. Hofer, G. Hlawacek, N. Li, S.A. Maloy, and C. Teichert, J. Nucl. Mater. 421, 140 (2012).

    Article  Google Scholar 

  42. X. Chen, J.F. Stubbins, P. Hosemann, and A.M. Bolind, J. Nucl. Mater. 398, 172 (2010).

    Article  Google Scholar 

  43. S. Saito, K. Kikuchi, D. Hamaguchi, M. Tezuka, M. Miyagi, H. Kokawa, and S. Watanabe, J. Nucl. Mater. 431, 91 (2012).

    Article  Google Scholar 

  44. A. Rivai, S. Saito, M. Tezuka, C. Kato, and K. Kikuchi, J. Nucl. Mater. 431, 97 (2012).

    Article  Google Scholar 

  45. P. Hosemann, M.E. Hawley, D. Koury, J. Welch, A.L. Johnson, G. Mori, N. Li, and S.A. Maloy, J. Nucl. Mater. 381, 211 (2008).

    Article  Google Scholar 

  46. A. Weisenburguer, C. Schroer, A. Jianu, A. Heinzel, J. Konys, H. Steiner, G. Mueller, C. Fazio, A. Gessi, S. Babayan, A. Kobzova, L. Martinelli, K. Ginestar, F. Balbaud-Celerier, F.J. Martin-Munoz, and L. Soler Crespo, J. Nucl. Mater. 415, 260 (2011).

    Article  Google Scholar 

  47. C. Schroer, O. Wedemeyer, A. Skrypnik, J. Novotny, and J. Konys, J. Nucl. Mater. 431, 105 (2012).

    Article  Google Scholar 

  48. R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM Stock Number: MONO3 (West Conshohocken, PA: American Society for Testing and Materials, 2001).

  49. D. Gorse, T. Auger, J.B. Vogt, I. Serre, A. Weisenburger, A. Gessi, P. Agostini, C. Fazio, A. Hojna, F. Di Gabriele, J. Van den Bosch, G. Coen, A. Almazouzi, and M. Serrano, J. Nucl. Mater. 415, 284 (2011).

    Article  Google Scholar 

  50. Y. Kurata, M. Futakawa, and S. Saito, J. Nucl. Mater. 373, 164 (2008).

    Article  Google Scholar 

  51. T. Furukawa, G. Mueller, G. Schumacher, A. Weisenburger, A. Heinzel, and K. Aoto, J. Nucl. Mater. 335, 189 (2004).

    Article  Google Scholar 

  52. F. Rubio, K. Woloshun, M. Caro, and S.A. Maloy (Paper presented at the American Nuclear Society, 2013 Student Conference, Massachusetts Institute of Technology, Boston, MA, 4–6 April 2013).

  53. H. Glasbrenner, J. Konys, G. Mueller, and A. Rusanov, J. Nucl. Mater. 296, 237 (2001).

    Article  Google Scholar 

  54. R.S. Lillard, C. Valot, M.A. Hill, P.D. Dickerson, and R.J. Hanrahan, Corrosion 60, 1031 (2004).

    Article  Google Scholar 

  55. J. Zhang, N. Li, and Y. Chen, Nucl. Sci. Eng. 154, 223 (2006).

    Google Scholar 

  56. J. Zhang, N. Li, Y. Chen, and A.E. Rusanov, J. Nucl. Mater. 336, 1 (2005).

    Article  Google Scholar 

  57. S.S. Parker, D. Frazer, M. Rebelo de Figueiredo, A. Lupinacci, K. Kikuchi, and P. Hosemann, personal communication, 2013.

  58. F. Barbier, G. Benamati, C. Fazio, and A. Rusanov, J. Nucl. Mater. 295, 149 (2001).

    Article  Google Scholar 

  59. F. Barbier and A. Rusanov, J. Nucl. Mater. 296, 231 (2001).

    Article  Google Scholar 

  60. G. Muller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmermann, V. Engelko, A. Rusanov, and V. Markov, J. Nucl. Mater. 301, 40 (2002).

    Article  Google Scholar 

  61. G. Muller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmermann, V. Engelko, A. Rusanov, and V. Markov, J. Nucl. Mater. 335, 163 (2004).

    Article  Google Scholar 

  62. J. Zhang, Corros. Sci. 51, 1207 (2009).

    Article  Google Scholar 

  63. A. Weisenburger, A. Heinzel, G. Mueller, H. Muscher, and A. Rousanov, J. Nucl. Mater. 376, 274 (2008).

    Article  Google Scholar 

  64. K. Kikuchi, Y. Kurata, S. Saito, M. Futakawa, T. Sasa, H. Oigawa, E. Wakai, and K. Miura, J. Nucl. Mater. 318, 348 (2003).

    Article  Google Scholar 

  65. F. Balbaud-Célérier, L. Martinelli, A. Terlain, A. Ngomsik, S. Sanchez, and G. Picard, Mater. Sci. Forum 461–464, 1091 (2004).

    Article  Google Scholar 

  66. M. Kondo, M. Takahashi, T. Suzuki, K. Ishikawa, K. Hata, S. Qiu, and H. Sekimoto, J. Nucl. Mater. 343, 349 (2005).

    Article  Google Scholar 

  67. M. Kieser, H. Muscher, A. Weisenburger, A. Heinzel, and G. Müller, J. Nucl. Mater. 392, 405 (2009).

    Article  Google Scholar 

  68. P. Hosemann, H.T. Thau, A.L. Johnson, S.A. Maloy, and N. Li, J. Nucl. Mater. 373, 246 (2008).

    Article  Google Scholar 

  69. P. Hosemann, R. Dickerson, N. Li, S.A. Maloy, Corros. Sci. 66, 196 (2013).

    Article  Google Scholar 

  70. R.G. Ballinger and J. Lim, Nucl. Technol. 147, 418 (2004).

    Google Scholar 

  71. J. Zhang and N. Li, Review of Studies on Fundamental Issues in LBE Corrosion, LANL/LA-UR-04-0869 (Los Alamos, NM: Los Alamos National Laboratory, 2004).

  72. G.I. Toshinsky, O.G. Komlev, P.N. Martynov, A.E. Rusanov, V.S. Stepanov, N.N. Klimov, A.V. Dedul, and S.N. Bolvanchikov, Atom. Energ. 111, 361 (2012).

    Article  Google Scholar 

  73. A. Letourneau, G. Fioni, F. Marie, D. Ridikas, and P. Mutti, Ann. Nucl. Energ. 33, 377 (2006).

    Article  Google Scholar 

  74. G. Toshinsky and V. Petrochenko, Sustainability 4, 2293 (2012).

    Article  Google Scholar 

  75. D.V. Pankratov, B.F. Gromov, M.A. Solodjankin, E.I. Efimov, V.N. Stepanov, G.I. Toshinsky, V.V. Kalchenko, V.V. Stekolnikov, V.S. Stepanov, L.N. Moskvin, O.G. Panov, and Y.A. Prokhoro, Trans. Am. Nucl. Soc. 67, 256 (1992).

    Google Scholar 

  76. M. Takahashi, Y. Qi, H. Nitta, N. Nishikawa, and T. Ohno, Sci. Technol. Adv. Mater. 5, 673 (2004).

    Article  Google Scholar 

  77. B. Yildiz, A. Nikiforova, and S. Yip, Nucl. Eng. Technol. 41, 21 (2009).

    Article  Google Scholar 

  78. S. Hendy, B. Walker, N. Laycock, and M. Ryan, Phys. Rev. B: Solid State 67, 085407 (2007).

    Article  Google Scholar 

  79. J.R. Rustad, E. Wasserman, and A.R. Felmy, Surf. Sci. Lett. 431, 583 (1999).

    Article  Google Scholar 

  80. C. Soontrapa and Y. Chen, Comput. Mater. Sci. 50, 3271 (2011).

    Article  Google Scholar 

  81. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, J. Nucl. Mater. 341, 103 (2005).

    Article  Google Scholar 

  82. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  83. J. Lim, H.O. Nam, I. Soon Hwang, and J. Hyun Kim, J. Nucl. Mater. 407, 205 (2010).

    Article  Google Scholar 

  84. M.P. Short and R.G. Ballinger, Nucl. Technol. 177, 366 (2012).

    Google Scholar 

  85. R.G. Ballinger, J. Lim, and N. Li, Trans. Am. Nucl. Soc. 94, 761 (2006).

    Google Scholar 

  86. M. Caro, K. Woloshun, F. Rubio, and S. Maloy, Materials Selection for the Lead-Bismuth Corrosion and Erosion Tests in DELTA Loop, Advanced SMR Materials Development—Small Modular Reactors Research and Development Program, LANL/LA-UR-13-22282 (Los Alamos, NM: Los Alamos National Laboratory, 2013).

Download references

Acknowledgements

The work described here summarizes the contribution of the effort of several people and institutions in the United States and abroad. The test matrix selection is the result of numerous fruitful discussions. The authors want to thank the NRC faculty development grant number NRC-38-09-948. This material is also partially based on work supported by the Department of Energy under Award Number DE-EE0005941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, M., Woloshun, K., Rubio, F. et al. Heavy Liquid Metal Corrosion of Structural Materials in Advanced Nuclear Systems. JOM 65, 1057–1066 (2013). https://doi.org/10.1007/s11837-013-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0663-7

Keywords

Navigation