Skip to main content
Log in

Methods for First-Principles Alloy Thermodynamics

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Traditional first-principles calculations excel at providing formation energies at absolute zero, but obtaining thermodynamic information at nonzero temperatures requires suitable sampling of all the excited states visited in thermodynamic equilibrium, which would be computationally prohibitive via brute-force quantum mechanical calculations alone. In the context of solid-state alloys, this issue can be addressed via the coarse-graining concept and the cluster expansion formalism. This process generates simple, effective Hamiltonians that accurately reproduce quantum mechanical calculation results and that can be used to efficiently sample configurational, vibrational, and electronic excitations and enable the prediction of thermodynamic properties at nonzero temperatures. Vibrational and electronic degrees of freedom are formally eliminated from the problem by writing the system’s partition function in a nested form in which the inner sums can be readily evaluated to yield an effective Hamiltonian. The remaining outermost sum corresponds to atomic configurations and can be handled via Monte Carlo sampling driven by the resulting effective Hamiltonian, thereby delivering thermodynamic properties at nonzero temperatures. This article describes these techniques and their implementation in the alloy theoretic automated toolkit, an open-source software package. The methods are illustrated by applications to various alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964).

    MathSciNet  Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. A 140, A1133 (1965).

    MathSciNet  Google Scholar 

  3. R.M. Dreizler and E.K.U. Gross, Density Functional Theory: an Approach to the Quantum Many-Body Problem (Berlin: Springer, 1990).

    MATH  Google Scholar 

  4. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Google Scholar 

  5. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, CALPHAD 28, 79 (2004).

    Google Scholar 

  6. J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).

    MathSciNet  Google Scholar 

  7. F. Ducastelle, Order and Phase Stability in Alloys (New York: Elsevier Science, 1991).

    Google Scholar 

  8. D. de Fontaine, Solid State Phys. 47, 33 (1994).

    Google Scholar 

  9. A. Zunger, NATO ASI on Statics and Dynamics of Alloy Phase Transformation, vol. 319, ed. P.E. Turchi and A. Gonis (New York: Plenum Press, 1994), p. 361.

  10. A. Zunger, MRS Bull. 22, 20 (1997).

    Google Scholar 

  11. C. Wolverton, V. Ozoliņš, and A. Zunger, J. Phys. Condens. Mater. 12, 2749 (2000).

    Google Scholar 

  12. G. Ceder, A. van der Ven, C. Marianetti, and D. Morgan, Model. Simul. Mater. Sci. 8, 311 (2000).

    Google Scholar 

  13. M. Asta, V. Ozolins, and C. Woodward, JOM 53 (9), 16 (2001).

    Google Scholar 

  14. A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).

    Google Scholar 

  15. A. van de Walle, Multiscale Modeling: From Atoms to Devices, ed. P. Derosa and T. Cagin (Boca Raton, FL: CRC Press, 2010).

  16. A. van de Walle, G. Ghosh, and M. Asta, Applied Computational Materials Modeling: Theory, Simulation and Experiment, ed. G. Bozzolo, R. Noebe, and P. Abel (Dordrecht, the Netherlands: Kluwer Academic Publishers, 2005).

  17. A. van de Walle and M. Asta, Handbook of Materials Modeling, Part A, ed. S. Yip (Dordrecht, the Netherlands: Springer, 2005).

  18. A.V. Ruban and I.A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).

    Google Scholar 

  19. A. van de Walle, CALPHAD 33, 266 (2009).

    Google Scholar 

  20. A. van de Walle, M. Asta, and G. Ceder, CALPHAD 26, 539 (2002).

    Google Scholar 

  21. A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348 (2002).

    Google Scholar 

  22. A. van de Walle and M. Asta, Model. Simul. Mater. Sci. 10, 521 (2002).

    Google Scholar 

  23. A.C. Powell and R. Arroyave, JOM 60 (5), 32 (2008).

    Google Scholar 

  24. A. van de Walle and D. Ellis, Phys. Rev. Lett. 98, 266101 (2007).

    Google Scholar 

  25. B.G. Chirranjeevi and A. van de Walle, Phys. Rev. B 86, 134117 (2012).

    Google Scholar 

  26. P. Dalach, D.E. Ellis, and A. van de Walle, Phys. Rev. B 85, 014108 (2012).

    Google Scholar 

  27. P. Dalach, D.E. Ellis, and A. van de Walle, Phys. Rev. B 82, 144117 (2010).

    Google Scholar 

  28. G. Ghosh, A. van de Walle, M. Asta, and G. Olson, CALPHAD 26, 491 (2002).

    Google Scholar 

  29. O. Adjaoud, G. Steinle-Neumann, B. Burton, and A. van de Walle, Phys. Rev. B 80, 134112 (2009).

    Google Scholar 

  30. C. Ravi, B.K. Panigrahi, M.C. Valsakumar, and A. van de Walle, Phys. Rev. B 85, 054202 (2012).

    Google Scholar 

  31. C. Ravi, A. van de Walle, B.K. Panigrahi, H.K. Sahu, and M.C. Valsakumar, Phys. Rev. B 81, 104111 (2010).

    Google Scholar 

  32. B.P. Burton and A. van de Walle, CALPHAD 37, 151 (2012).

    Google Scholar 

  33. B.P. Burton, A. van de Walle, and H.T. Stokes, J. Phys. Soc. Jpn. 81, 014004 (2012).

    Google Scholar 

  34. G. Pomrehn, E. Toberer, G. Snyder, and A. van de Walle, J. Am. Chem. Soc. 133, 11255 (2011).

    Google Scholar 

  35. G.S. Pomrehn, E.S. Toberer, G.J. Snyder, and A. van de Walle, Phys. Rev. B 83, 094106 (2011).

    Google Scholar 

  36. B.P. Burton, S. Demers, and A. van de Walle, J. Appl. Phys. 110, 023507 (2011).

    Google Scholar 

  37. B. Burton, A. van de Walle, and U. Kattner, J. Appl. Phys. 100, 113528 (2006).

    Google Scholar 

  38. D. Morgan, D. Balachandran, G. Ceder, and A. van de Walle, MRS Proceedings, vol. 755, ed. M. Greenblatt, M. Alario-Franco, M. Whittingham, and G. Rohrer (Cambridge, UK: Cambridge University Press, 2002), pp. DD2.8-1.

  39. D. Morgan, B. Wang, G. Ceder, and A. van de Walle, Phys. Rev. B 67, 134404 (2003).

    Google Scholar 

  40. D. Balachandran, D. Morgan, G. Ceder, and A. van de Walle, J. Solid State Chem. 173, 462 (2003).

    Google Scholar 

  41. R. Benedek, M.M. Thackeray, and A. van de Walle, J. Mater. Chem. 20, 369 (2009).

    Google Scholar 

  42. R. Benedek and A. van de Walle, J. Electrochem. Soc. 155, A711 (2008).

    Google Scholar 

  43. R. Benedek, M.M. Thackeray, and A. van de Walle, Chem. Mater. 20, 5485 (2008).

    Google Scholar 

  44. Q. Xu and A. Van der Ven, Phys. Rev. B 76, 064207 (2007).

    Google Scholar 

  45. R. Arroyave, A. van de Walle, and Z.K. Liu, Acta Mater. 54, 473 (2006).

    Google Scholar 

  46. G. Ghosh, A. van de Walle, and M. Asta, J. Phase Equilib. Diff. 28, 9 (2007).

    Google Scholar 

  47. A. van de Walle, Z. Moser, and W. Gasior, Arch. Metall. Mater. 49, 535 (2004).

    Google Scholar 

  48. B. Burton and A. van de Walle, Phys. Chem. Miner. 30, 88 (2003).

    Google Scholar 

  49. B. Burton and A. van de Walle, Chem. Geol. 225, 222 (2006).

    Google Scholar 

  50. A. van de Walle and M. Asta, Metall. Mater. Trans. A 33A, 735 (2002).

    Google Scholar 

  51. C.H. Lanier, A. van de Walle, N. Erdman, E. Landree, O. Warschkow, A. Kazimirov, K.R. Poeppelmeier, J. Zegenhagen, M. Asta, and L.D. Marks, Phys. Rev. B 76, 045421 (2007).

    Google Scholar 

  52. R. Benedek, A. van de Walle, S. Gerstl, M. Asta, D.N. Seidman, and C. Woodward, Phys. Rev. B 71, 094201 (2005).

    Google Scholar 

  53. P.D. Tepesch, G.D. Garbulsky, and G. Ceder, Phys. Rev. Lett. 74, 2272 (1995).

    Google Scholar 

  54. G.M. Stocks, D.M.C. Nicholson, W.A. Shelton, B.L. Gyorffy, F.J. Pinski, D.D. Johnson, J.B. Staunton, P.E.A. Turchi, and M. Sluiter, NATO ASI on Statics and Dynamics of Alloy Phase Transformation, vol. 319, ed. P.E. Turchi and A. Gonis (New York: Plenum Press, 1994), p. 305.

  55. D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B 46, 12587 (1992).

    Google Scholar 

  56. C. Wolverton and A. Zunger, Phys. Rev. Lett. 75, 3162 (1995).

    Google Scholar 

  57. C. Varney and G.L.W. Hart, TMS Lett. 1, 35 (2004).

    Google Scholar 

  58. A. van de Walle, C.B. Gopal, S. Demers, Q. Hong, A. Kowalski, L. Miljacic, G. Pom-rehn, and P. Tiwary, Symmetry-adapted bases for parametrizing anisotropic properties, http://arxiv.org/abs/1301.0168, ArXiv preprint (2012).

  59. G.D. Garbulsky (Ph.D. dissertation, Massachusetts Institute of Technology, 1996).

  60. G.D. Garbulsky and G. Ceder, Phys. Rev. B 49, 6327 (1994).

    Google Scholar 

  61. G.J. Ackland, Alloy Modelling and Design, ed. G. Stocks and P. Turchi (Warrendale, PA: TMS, 1994), p. 149.

  62. J.D. Althoff, D. Morgan, D. de Fontaine, M. Asta, S.M. Foiles, and D.D. Johnson, Phys. Rev. B 56, R5705 (1997).

    Google Scholar 

  63. L. Anthony, J.K. Okamoto, and B. Fultz, Phys. Rev. Lett. 70, 1128 (1993).

    Google Scholar 

  64. A. van de Walle, G. Ceder, and U.V. Waghmare, Phys. Rev. Lett. 80, 4911 (1998).

    Google Scholar 

  65. L. Anthony, L.J. Nagel, J.K. Okamoto, and B. Fultz, Phys. Rev. Lett. 73, 3034 (1994).

    Google Scholar 

  66. L.J. Nagel (Ph.D. dissertation, California Institute of Technology, 1996).

  67. D. Morgan, A. van de Walle, G. Ceder, J.D. Althoff, and D. de Fontaine, Modell. Simul. Mater. Sci. Eng. 8, 295 (2000).

    Google Scholar 

  68. B. Fultz, Progr. Mater. Sci. 55, 247 (2010).

    Google Scholar 

  69. V. Ozoliņš and M. Asta, Phys. Rev. Lett. 86, 448 (2001).

    Google Scholar 

  70. C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518 (2001).

    Google Scholar 

  71. X. Gonze, D.C. Allan, and M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992).

    Google Scholar 

  72. S. de Gironcoli, Phys. Rev. B 51, 6773 (1995).

    Google Scholar 

  73. V.L. Moruzzi, J.F. Janak, and K. Schwarz, Phys. Rev. B 37, 790 (1988).

    Google Scholar 

  74. M. Asta, R. McCormack, and D. de Fontaine, Phys. Rev. B 48, 748 (1993).

    Google Scholar 

  75. J.M. Sanchez, J.P. Stark, and V.L. Moruzzi, Phys. Rev. B 44, 5411 (1991).

    Google Scholar 

  76. C. Colinet, J. Eymery, A. Pasturel, and A.T. Paxton, J. Phys. Condens. Matter 6, L47 (1994).

    Google Scholar 

  77. G.D. Garbulsky and G. Ceder, Phys. Rev. B 53, 8993 (1996).

    Google Scholar 

  78. P.D. Tepesch, A.F. Kohan, G.D. Garbulsky, and G. Ceder, J. Am. Ceram. Soc. 49, 2033 (1996).

    Google Scholar 

  79. V. Ozoliņš, C. Wolverton, and A. Zunger, Phys. Rev. B 58, R5897 (1998).

    Google Scholar 

  80. M.H. Sluiter, M. Weinert, and Y. Kawazoe, Phys. Rev. B 59, 4100 (1999).

    Google Scholar 

  81. A. van de Walle and G. Ceder, Phys. Rev. B 61, 5972 (2000).

    Google Scholar 

  82. E. Wu, G. Ceder, and A. van de Walle, Phys. Rev. B 67, 134103 (2003).

    Google Scholar 

  83. J.Z. Liu, G. Ghosh, A. van de Walle, and M. Asta, Phys. Rev. B 75, 104117 (2007).

    Google Scholar 

  84. D. de Fontaine, J. Althoff, D. Morgan, M. Asta, S. Foiles, and D.J.A. Quong, Phase Transformations and Systems Driven Far From Equilibrium, ed. E. Ma, M. Atzmon, P. Bellon, and R. Trivedi (Warrendale, PA: TMS, 1998), p. 175.

  85. A.A. Quong and A.Y. Lui, Phys. Rev. B 56, 7767 (1997).

    Google Scholar 

  86. C.W. Li, X. Tang, J.A. Munoz, J.B. Keith, S.J. Tracy, D.L. Abernathy, and B. Fultz, Phys. Rev. Lett. 107, 195504 (2011).

    Google Scholar 

  87. J. Bhattacharya and A. van der Ven, Acta Mater. 56, 4226 (2008).

  88. Q. Hong and A. van de Walle, J. Chem. Phys. 137, 094114 (2012).

    Google Scholar 

  89. B. Monserrat, N.D. Drummond, and R.J. Needs, Phys. Rev. B 87, 144302 (2013).

    Google Scholar 

  90. V. Ozolins, Phys. Rev. Lett. 102, 065702 (2009).

    Google Scholar 

  91. C. Wolverton, V. Ozolins, and M. Asta, Phys. Rev. B 69, 144109 (2004).

    Google Scholar 

  92. N.D. Mermin, Phys. Rev. 137, A1441 (1965).

    MathSciNet  Google Scholar 

  93. C. Wolverton and A. Zunger, Phys. Rev. B 52, 8813 (1995).

    Google Scholar 

  94. F. Kormann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neugebauer, Phys. Rev. B 78, 033102 (2008).

    Google Scholar 

  95. I. Leonov, A.I. Poteryaev, V.I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).

    Google Scholar 

  96. I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, Acta Mater. 50, 379 (2002).

    Google Scholar 

  97. F. Zhou, T. Maxisch, and G. Ceder, Phys. Rev. Lett. 97, 155704 (2006).

    Google Scholar 

  98. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Google Scholar 

  99. M. Stone and J. Roy, Stat. Soc. B Met. 36, 111 (1974).

    MATH  Google Scholar 

  100. K.C. Li, Ann. Stat. 15, 956 (1987).

    Google Scholar 

  101. G.D. Garbulksy and G. Ceder, Phys. Rev. B 51, 67 (1995).

    Google Scholar 

  102. A. van de Walle, Nat. Mater. 4, 362 (2005).

    Google Scholar 

  103. G.W. Hart, V. Blum, M.J. Walorski, and A. Zunger, Nat. Mater. 4, 391 (2005).

    Google Scholar 

  104. N.A. Zarkevich and D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004).

    Google Scholar 

  105. T.L. Tan and D.D. Johnson, ArXiv e-prints p. 1209.6176 (2012).

  106. E.T. Jaynes, Probability Theory: The Logic of Science (Vol. I) (Cambridge: Cambridge University Press, 2003).

    Google Scholar 

  107. E. Cockayne and A. van de Walle, Phys. Rev. B 81, 012104 (2010).

    Google Scholar 

  108. A.P.J. Jansen and C. Popa, Phys. Rev. B 78, 085404 (2008).

    Google Scholar 

  109. T. Mueller and G. Ceder, Phys. Rev. B 80, 024103 (2009).

    Google Scholar 

  110. A.N. Tikhonov, Dokl. Akad. Nauk SSSR 39, 195 (1943).

    MathSciNet  Google Scholar 

  111. R. Drautz and A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006).

    Google Scholar 

  112. A. Diaz-Ortiz, H. Dosch, and R. Drautz, J. Phys. Condens. Matter 19, 406206 (2007).

    Google Scholar 

  113. A. Zunger, L.G. Wang, G.L.W. Hart, and M. Sanati, Model. Simul. Mater. Sci. Eng. 10, 685 (2004).

    Google Scholar 

  114. L.J. Nelson, G.L.W. Hart, F. Zhou, and V. Ozolins, Phys. Rev. B 87, 035125 (2013).

    Google Scholar 

  115. A. Seko, Y. Koyama, and I. Tanaka, Phys. Rev. B 80, 165122 (2009).

    Google Scholar 

  116. T. Mueller and G. Ceder, Phys. Rev. B 82, 184107 (2010).

    Google Scholar 

  117. L.G. Ferreira, S.H. Wei, and A. Zunger, Int. J. Supercomput. Appl. 5, 34 (1991).

    Google Scholar 

  118. G.L.W. Hart and R.W. Forcade, Phys. Rev. B 77, 224115 (2008).

    Google Scholar 

  119. K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics (New York: Springer, 1988).

    MATH  Google Scholar 

  120. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (San Diego: Academic Press, 2002).

    Google Scholar 

  121. A.F. Kohan, P.D. Tepesch, G. Ceder, and C. Wolverton, Comput. Mater. Sci. 9, 389 (1998).

    Google Scholar 

  122. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  123. G. Ghosh, A. van de Walle, and M. Asta, Acta Mater. 56, 3202 (2008).

    Google Scholar 

  124. A. Zunger, S.H. Wei, L. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Google Scholar 

  125. K.C. Hass, L.C. Davis, and A. Zunger, Phys. Rev. B 42, 3757 (1990).

    Google Scholar 

  126. A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, CALPHAD 42, 13 (2013).

    Google Scholar 

  127. D. Shin, A. van de Walle, Y. Wang, and Z.K. Liu, Phys. Rev. B 76, 144204 (2007).

    Google Scholar 

  128. I.A. Abrikosov, S.I. Simak, B. Johansson, A.V. Ruban, and H.L. Skriver, Phys. Rev. B 56, 9319 (1997).

    Google Scholar 

  129. J. von Pezold, A. Dick, M. Friiák, and J. Neugebauer, Phys. Rev. B 81, 094203 (2010).

    Google Scholar 

  130. D. Shin, R. Arroyave, Z.K. Liu, and A. van de Walle, Phys. Rev. B 74, 024204 (2006).

    Google Scholar 

  131. A. van de Walle, Nat. Mater. 7, 455 (2008).

    Google Scholar 

  132. J.Z. Liu, A. van de Walle, G. Ghosh, and M. Asta, Phys. Rev. B 72, 144109 (2005).

    Google Scholar 

  133. F. Tasniádi, M. Odién, and I.A. Abrikosov, Phys. Rev. B 85, 144112 (2012).

    Google Scholar 

  134. P. Tiwary and A. van de Walle, Phys. Rev. B 87, 094304 (2013).

    Google Scholar 

  135. P. Tiwary and A. van de Walle, Phys. Rev. B 84, 100301(R) (2011).

  136. A.F. Voter, F. Montalenti, and T.C. Germann, Ann. Rev. Mater. Res. 32, 321 (2002).

    Google Scholar 

  137. D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar, and A.F. Voter, Annu. Rep. Comput. Chem. 5, 79 (2009).

    Google Scholar 

  138. D. Alfè, G.D. Price, and M.J. Gillan, J. Phys. Chem. Solids 65, 1573 (2004).

    Google Scholar 

  139. L.G. Wang, A. van de Walle, and D. Alfè, Phys. Rev. B 84, 092102 (2011).

    Google Scholar 

  140. B. Widom, J. Chem. Phys. 39, 2808 (1963).

    Google Scholar 

  141. Q. Hong, and A. van de Walle, J. Chem. Phys. 139, 094114 (2013).

  142. S. Demers and A. van de Walle, Phys. Rev. B 85, 195208 (2012).

    Google Scholar 

  143. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  144. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Google Scholar 

  145. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, and D. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Google Scholar 

  146. X. Gonze, G.M. Rignanese, M. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas, F. Jol-let, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. Hamann, and D. Allan, Zeit. Kristallogr. 220, 558 (2005).

    Google Scholar 

  147. J.D. Gale and A.L. Rohl, Mol. Simul. 29, 291 (2003).

    MATH  Google Scholar 

  148. J.D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997).

    Google Scholar 

  149. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 k, http://www.wien2k.at/.

  150. M. Chakraborty, J. Spitaler, P. Puschnig, and C. Ambrosch-Draxl, Comput. Phys. Commun. 181, 913 (2010).

    MATH  Google Scholar 

  151. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).

    Google Scholar 

  152. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Mater. 14, 2745 (2002).

    Google Scholar 

  153. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002).

    Google Scholar 

  154. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Acta Mater. 48, 3113 (2000).

    Google Scholar 

  155. V.V. Samokhva, P.A. Poleshchuk, and A.A. Vecher, Russ. J. Phys. Chem. 45, 1174 (1971).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation via grants DMR-1154895 and DMR-0907669, and by the Office of Naval Research via grants N00014-12-1-0557 and N00014-12-1-0196. ATAT was made possible by a number of contributors, including, Yi Wang, Dongwong Shin, Volker Blum, Mayeul d’Avezac, Gautam Ghosh, Zhe Liu, Greg Pomrehn, Balaji Gopal Chirranjeevi, and Pratyush Tiwary, and by a number of long-time supporters, including Mark Asta, Gerd Ceder, Zi-Kui Liu, Raymundo Arroyave, and Ben Burton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel van de Walle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Walle, A. Methods for First-Principles Alloy Thermodynamics. JOM 65, 1523–1532 (2013). https://doi.org/10.1007/s11837-013-0764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0764-3

Keywords

Navigation