Skip to main content
Log in

In situ Measurements of Irradiation-Induced Creep of Nanocrystalline Copper at Elevated Temperatures

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have measured irradiation-induced creep on nanocrystalline copper micropillars at elevated temperatures. The micropillars, which were ≈1 µm in diameter and ≈2 µm in height, were fabricated from magnetron-sputtered nanocrystalline copper films. The micropillars were compressed during 2.0 MeV Ar+ bombardment and the deformation measured in situ by laser interferometry. The creep rate was measured over the stress range 10–120 MPa at ≈200°C. The results show linear relationships of creep rate with both applied stress and displacement rate, yielding a creep compliance of 0.07 dpa−1 GPa−1 (dpa:displacement per atom). The findings are in good agreement with the previous results obtained using a bulge test on free-standing thin film specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y. Guerin, G.S. Was, and S.J. Zinkle, MRS Bull. 34, 10 (2009).

    Google Scholar 

  2. T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010).

    Article  Google Scholar 

  3. M.J. Demkowicz, P. Bellon, and B.D. Wirth, MRS Bull. 35, 992 (2010).

    Article  Google Scholar 

  4. I.-S. Kim, J.D. Hunn, N. Hashimoto, D.L. Larson, P.J. Maziasz, K. Miyahara, and E.H. Lee, J. Nucl. Mater. 280, 264 (2000).

    Article  Google Scholar 

  5. X. Zhang, N.Q. Vo, P. Bellon, and R.S. Averback, Acta Mater. 59, 5332 (2011).

    Article  Google Scholar 

  6. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM 59, 62 (2007).

    Article  Google Scholar 

  7. A.R. Causey, G.J.C. Carpenter, and S.R. MacEwen, J. Nucl. Mater. 90, 216 (1980).

    Article  Google Scholar 

  8. K. Tai, R.S. Averback, P. Bellon, and Y. Ashkenazy, Scr. Mater. 65, 163 (2011).

    Article  Google Scholar 

  9. C. Xu and G.S. Was, J. Nucl. Mater. 441, 681 (2013).

    Article  Google Scholar 

  10. S. Özerinç, R.S. Averback, and W.P. King, J. Nucl. Mater. 451, 104 (2014).

    Article  Google Scholar 

  11. S. Özerinç, H.J. Kim, R.S. Averback, and W.P. King, J. Appl. Phys. 117, 024310 (2015).

    Article  Google Scholar 

  12. Z.C. Duan and A.M. Hodge, JOM 61, 32 (2009).

    Article  Google Scholar 

  13. J.C. Trenkle, C.E. Packard, and C.A. Schuh, Rev. Sci. Instrum. 81, 073901 (2010).

    Article  Google Scholar 

  14. C.A. Schuh, C.E. Packard, and A.C. Lund, J. Mater. Res. 21, 725 (2006).

    Article  Google Scholar 

  15. J.F. Smith and S. Zheng, Surf. Eng. 16, 143 (2000).

    Article  Google Scholar 

  16. B.D. Beake and J.F. Smith, Philos. Mag. A 82, 2179 (2002).

    Article  Google Scholar 

  17. A.J.M. Wood and T.W. Clyne, Acta Mater. 54, 5607 (2006).

    Article  Google Scholar 

  18. S. Korte and W.J. Clegg, Scr. Mater. 60, 807 (2009).

    Article  Google Scholar 

  19. N.M. Everitt, M.I. Davies, and J.F. Smith, Philos. Mag. 91, 1221 (2011).

    Article  Google Scholar 

  20. S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, J. Mater. Res. 27, 167 (2012).

    Article  Google Scholar 

  21. J.M. Wheeler and J. Michler, Rev. Sci. Instrum. 84, 045103 (2013).

    Article  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, and M.D. Ziegler, SRIM, The Stopping and Range of Ions in Matter (Chester: SRIM Co., 2008).

    Google Scholar 

  23. S.G. Mayr, Y. Ashkenazy, K. Albe, and R.S. Averback, Phys. Rev. Lett. 90, 055505 (2003).

    Article  Google Scholar 

  24. H. Trinkaus and A.I. Ryazanov, Phys. Rev. Lett. 74, 5072 (1995).

    Article  Google Scholar 

  25. C.A. Volkert and A. Polman, MRS Online Proc. Libr. 235, 3 (1991).

    Article  Google Scholar 

  26. P. Jung, J. Appl. Phys. 86, 4876 (1999).

    Article  Google Scholar 

  27. H. Trinkaus, J. Nucl. Mater. 223, 196 (1995).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DEFG02-05ER46217. The work was carried out, in part, in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezer Özerinç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özerinç, S., Averback, R.S. & King, W.P. In situ Measurements of Irradiation-Induced Creep of Nanocrystalline Copper at Elevated Temperatures. JOM 68, 2737–2741 (2016). https://doi.org/10.1007/s11837-016-2077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2077-9

Keywords

Navigation