Skip to main content
Log in

Design and Development of Shielded Metal Arc Welding (SMAW) Electrode Coatings Using a CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 Flux System

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study aims to investigate the physicochemical and thermophysical behavior of the electrode coatings produced using CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 ternary phase systems. Electrode coating compositions for welding power plant materials are either patented or not available in the public domain so researchers need to explore the flux coatings to improve the properties of welds produced. An extreme vertices design methodology was used to obtain the different flux combinations to study the effect of electrode coating constituents on weight loss, density, specific heat, change in enthalpy, thermal diffusivity and thermal conductivity. These properties play an important role in achieving better weld quality. X-ray diffraction and Fourier-transform infrared spectroscopy techniques were used to analyze the different phases present and their structural behavior. Multi-response optimization was carried out to obtain the optimum flux composition and study the effect of individual constituents and their interaction effects on the thermophysical and physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Sham and S. Liu, Weld. J. 93, 271 (2014).

    Google Scholar 

  2. T.H. North, H.B. Bell, and A. Nowicki, Suppl. Weld. J. 229, 63s (1978).

    Google Scholar 

  3. A. Joseph, K.R. Sanjai, and J.T. Murgann, Press. Vessels Pip. 82, 700 (2005).

    Article  Google Scholar 

  4. L. Sharma, R. Chhibber, IMechE Part E J. Process Mech. Eng. 0(0), 1 (2018).

  5. J.H. Palm, Weld. J. 51, 358s (1972).

    Google Scholar 

  6. R.A. McLean and V.L. Anderson, Technometrics 8, 447 (1966).

    Article  MathSciNet  Google Scholar 

  7. D. Bhandari, R. Chhibber, and N. Arora, J. Manuf. Process. 23, 61 (2016).

    Article  Google Scholar 

  8. D. Bhandari, R. Chhibber, and N. Arora, Mater. Sci. Forum 880, 37 (2017).

    Article  Google Scholar 

  9. D. Bhandari, R. Chhibber, N. Arora, IMechE Part L J. Mater. Des. Appl. 0(0), 1 (2016).

  10. S. Jindal, R. Chhibber, and N.P. Mehta, IMechE Part B J. Eng. Manuf. 227, 383 (2013).

    Article  Google Scholar 

  11. S. Jindal, R. Chhibber, and N.P. Mehta, IMechE Part B J. Eng. Manuf. 228, 1259 (2014).

    Article  Google Scholar 

  12. M. Ushio, B. Zaghloul, and W. Metawally, Transactions of JWRI 24, 45 (1995).

    Google Scholar 

  13. T.W. Eagar, Weld Res. Suppl. 22, 76s (1978).

    Google Scholar 

  14. C.A. Natalie and D.L. Olson, Ann. Rev. Mater. Sci. 16, 389 (1986).

    Article  Google Scholar 

  15. R. Qin and G. He, Metall. Mater. Trans. A 44A, 1475 (2012).

    Google Scholar 

  16. H. Wang, R. Qin, and G. He, Metall. Mater. Trans. A 47A, 4530 (2016).

    Article  Google Scholar 

  17. R.C. DeVries, R. Roy, and F. Osborn, J. Am. Ceram. Soc. 38, 158 (1955).

    Article  Google Scholar 

  18. G. Eriksson and A.D. Pelton, Metall. Mater. Trans. A 24, 807 (1993).

    Article  Google Scholar 

  19. P.A. Burke, J.E. Indacochea, and D.L. Olson, Weld J. 69, 115 (1990).

    Google Scholar 

  20. C.B. Dallam, S. Liu, and D.L. Olson, Weld J. 64, 140 (1985).

    Google Scholar 

  21. K. C. Mills, “Estimation of slag properties”, Southern African Pyrometallurgy (Short course), March 2011.

  22. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lorz, and R. Carli, Ironmak. Steelmak. 27, 238 (2000).

    Article  Google Scholar 

  23. K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, and H.T. Tsai, ISIJ Int. 45, 619 (2005).

    Article  Google Scholar 

  24. J.H. Kim, R.H. Frost, D.L. Olson, and M. Blander, Weld. Res. Suppl. 69, 446s (1990).

    Google Scholar 

  25. U. Mitra and T.W. Eagar, Metall. Mater. Trans. A 22B, 83 (1991).

    Article  Google Scholar 

  26. L. Sharma and R. Chhibber, Ceram. Int. 45, 1569 (2019).

    Article  Google Scholar 

  27. L. Sharma, R. Chhibber, Silicon, https://doi.org/10.1007/s12633-019-0068-5.

  28. P. Kanjilal, T.K. Pal, and S.K. Majumdar, Weld. J. 86, 135s (2007).

    Google Scholar 

  29. K.C. Mills and S. Seethharaman, Fundamentals of metallurgy (Abington: Woodhead Publishing, 2005). ISBN-10: 1-84569-094-X.

  30. M. Kerstan, M. Muller, and C. Russel, Mater. Res. Bull. 46, 2456 (2011).

    Article  Google Scholar 

  31. Y.P. Tarlakov, I.F. Es’kova, A.M. Shevyakov, Issled Strukt Sostyaniya Neorg Veshchestu 1, 7 (1974).

  32. G. Kaur, M. Kumar, A. Arora, O.P. Pandey, and K. Singh, J. Non Cryst Solids 357, 858 (2011).

    Article  Google Scholar 

  33. M. Garai, N. Sasmal, A.R. Molla, and B. Karmakar, Solid State Sci. 44, 10 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Mahajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, S., Chhibber, R. Design and Development of Shielded Metal Arc Welding (SMAW) Electrode Coatings Using a CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 Flux System. JOM 71, 2435–2444 (2019). https://doi.org/10.1007/s11837-019-03494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03494-9

Navigation