Skip to main content
Log in

The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocomposite

  • Zinc Oxide Nanotechnology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Acrylic acid-modified starch has been achieved by grafting the starch with an acrylic acid homopolymer by using the biodegradable nonionic surfactant Lutensol-XL-100 (decaoxyethyele n-decyl ether) and ammonium persulfate as a free radical originator. After obtaining the optimized starch-based plastic thin film, a nanocomposite (NC) was created by incorporating nickel-doped zinc oxide nanoparticles (ZnO@Ni NPs), which served as the control for the degradation rate of the composite plastic. The NC was characterized using FTIR, TGA, DSC, and SEM. The ZnO@Ni NPs induced an antibacterial property in the composite film with improved thermal stability and effective to control bacterial growth. The starch-grafted polyacrylic acid exhibited 23.21% biodegradability in 60 days while its NC showed 16.19% at the same time by a soil burial test. It was observed that the composite film exhibited a significant efficacy against the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.H.A. Tran, R.-D. Hund, J. Kemnitzer, J. Schwarzer, and C. Cherif, Mater. Lett. 237, 258 (2019).

    Article  Google Scholar 

  2. P.S. Calabro’, A. Folino, F. Fazzino, and D. Komilis, J. Hazard. Mater. 390121653 (2020).

  3. S. Magni, F. Bonasoro, C. Della Torre, C.C. Parenti, D. Maggioni, and A. Binelli, Sci. Total Environ., 720, 137602 (2020).

  4. H. Karan, C. Funk, M. Grabert, M. Oey, and B. Hankamer, Trends Plant Sci., 24237 (2019).

  5. N. Saba, M. Jawaid, and M. Asim, Chapter 7 - Nanocomposites with nanofibers and fillers from renewable resources, Green Composites for Automotive Applications, ed. G. Koronis, and A. Silva (Cambridge: Woodhead, 2019), p. 145.

  6. M. Shen, B. Song, G. Zeng, Y. Zhang, W. Huang, X. Wen, and W. Tang, Environ. Pollut. 263, 114469 (2020).

    Article  Google Scholar 

  7. X. Chen and N. Yan, Mater. Today Sustain. 7–8, 100031 (2020).

    Article  Google Scholar 

  8. A. Saikia, D. Hazarika, and N. Karak, Polymer Degrad. Stabil. 159, 15 (2019).

    Article  Google Scholar 

  9. S. Iqbal, A. Bahadur, A. Saeed, K. Zhou, M. Shoaib, and M. Waqas, J. Colloid Interf. Sci. 502, 16 (2017).

    Article  Google Scholar 

  10. A. Shafqat, A. Tahir, A. Mahmood, and A. Pugazhendhi, Biocatal. Agric. Biotechnol., (2020) 101540.

  11. D. Briassoulis, A. Pikasi, and M. Hiskakis, Polymer Degrad. Stabil., (2020) 109217.

  12. Y. Zare and K.Y. Rhee, Compos. B 158, 162 (2019).

    Article  Google Scholar 

  13. A. Bahadur, S. Iqbal, M. Shoaib, and A. Saeed, Dalton Trans. 47, 15031 (2018).

    Article  Google Scholar 

  14. M. Waqas, S. Iqbal, A. Bahadur, A. Saeed, M. Raheel, and M. Javed, Appl. Catal. B 219, 30 (2017).

    Article  Google Scholar 

  15. S. Anwer, G. Bharath, S. Iqbal, H. Qian, T. Masood, K. Liao, W.J. Cantwell, J. Zhang, and L. Zheng, Electrochim. Acta 283, 1095 (2018).

    Article  Google Scholar 

  16. S. Iqbal, Z. Pan, and K. Zhou, Nanoscale, 96638 (2017).

  17. W. Abdallah, A. Mirzadeh, V. Tan, and M.R. Kamal, Nanomaterials 9, 29 (2019).

    Article  Google Scholar 

  18. A.M. Mhatre, A.S.M. Raja, S. Saxena, and P.G. Patil, Environmentally Benign and Sustainable Green Composites: Current Developments and Challenges, Green Composites: Sustainable Raw Materials ed. S.S. Muthu, (Singapore: Springer, 2019), p. 53.

  19. J. Li, X. Yang, H. Xiu, H. Dong, T. Song, F. Ma, P. Feng, X. Zhang, E. Kozliak, and Y. Ji, Indust. Crops Products 128, 186 (2019).

    Article  Google Scholar 

  20. A.C. Jadhav, P. Pandit, T.N. Gayatri, P.P. Chavan, and N.C. Jadhav, Production of Green Composites from Various Sustainable Raw Materials, Green Composites: Sustainable Raw Materials, ed. S.S. Muthu (Singapore: Springer, 2019), p. 1.

  21. E. Kabir, R. Kaur, J. Lee, K.-H. Kim, and E.E. Kwon, J. Clean. Product. 258, 120536 (2020).

    Article  Google Scholar 

  22. S. Shabana, R. Prasansha, I. Kalinina, I. Potoroko, U. Bagale, and S.H. Shirish, Ultrason. Sonochem. 51, 444 (2019).

    Article  Google Scholar 

  23. H.Y. Sintim, A.I. Bary, D.G. Hayes, L.C. Wadsworth, M.B. Anunciado, M.E. English, S. Bandopadhyay, S.M. Schaeffer, J.M. DeBruyn, C.A. Miles, J.P. Reganold, and M. Flury, Sci. Total Environ. 727, 138668 (2020).

    Article  Google Scholar 

  24. C. Zhang, C. Wang, G. Cao, D. Wang, and S.-H. Ho, J. Hazard. Mater. 388, 121773 (2020).

    Article  Google Scholar 

  25. T. Gurunathan, S. Mohanty, and S.K. Nayak, Compos. A 77, 1 (2015).

    Article  Google Scholar 

  26. J.I. Morán, A. Vázquez, and V.P. Cyras, J. Mater. Sci. 48, 7196 (2013).

    Article  Google Scholar 

  27. R. Hatti-Kaul, L.J. Nilsson, B. Zhang, N. Rehnberg, and S. Lundmark, Trends Biotechnol. 38, 50 (2020).

    Article  Google Scholar 

  28. A. Biswas, R.L. Shogren, D.G. Stevenson, J.L. Willett, and P.K. Bhowmik, Carbohyd. Polymers 66, 546 (2006).

    Article  Google Scholar 

  29. A.K. Urbanek, A.M. Mirończuk, A. García-Martín, A. Saborido, I. de la Mata, and M. Arroyo, Biochim. Biophys. Acta 1868, 140315 (2020).

    Article  Google Scholar 

  30. S. Jafarzadeh, S.M. Jafari, A. Salehabadi, A.M. Nafchi, U.S. Uthaya Kumar, and H.P.S.A. Khalil, Trends Food Sci. Technol. 100, 262 (2020).

    Google Scholar 

  31. R. Jayasekara, I. Harding, I. Bowater, G.B.Y. Christie, and G.T. Lonergan, Polymer Test. 23, 17 (2004).

    Article  Google Scholar 

  32. M.I. Khalil, A. Hashem, and A. Hebeish, Starch 47, 394 (1995).

    Article  Google Scholar 

  33. I. Gon˜i, M. Gurruchaga, M. Valero, and G.M. Guzmán, Polymer, 34, 1780 (1993).

  34. S.H.O. Egboh and A.K. Mukherjee, J. Appl. Polymer Sci. 44, 233 (1992).

    Article  Google Scholar 

  35. F. Inceoglu and Y.Z. Menceloglu, J. Appl. Polymer Sci. 129, 1907 (2013).

    Article  Google Scholar 

  36. N.A. Ibrahim, A. Amr, B.M. Eid, Z.E. Mohamed, and H.M. Fahmy, Carbohyd. Polymers 89, 648 (2012).

    Article  Google Scholar 

  37. G. Gedda, H.N. Abdelhamid, M.S. Khan, and H.-F. Wu, RSC Adv. 4, 45973 (2014).

    Article  Google Scholar 

  38. H.N. Abdelhamid, Z. Huang, A.M. El-Zohry, H. Zheng, and X. Zou, Inorg. Chem. 56, 9139 (2017).

    Article  Google Scholar 

  39. H.N. Abdelhamid and X. Zou, Green Chem. 20, 1074 (2018).

    Article  Google Scholar 

  40. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, and M.-H. Cho, Nanomed. Nanotechnol. Biol. Med. 3, 95 (2007).

    Article  Google Scholar 

  41. A. Mondal, P.B. Chouke, V. Sonkusre, T. Lambat, A.A. Abdala, S. Mondal, and R.G. Chaudhary, Mater Today Proc. (2020).

  42. J. Pachiyappan, N. Gnanasundaram, and G.L. Rao, Results Mater. 7, 100104 (2020).

    Article  Google Scholar 

  43. S.C. Mojumdar and L. Raki, J. Therm. Anal. Calorim. 85, 99 (2006).

    Article  Google Scholar 

  44. S. Iqbal, A. Bahadur, S. Anwer, S. Ali, R.M. Irfan, H. Li, M. Shoaib, M. Raheel, T.A. Anjum, and M. Zulqarnain, Colloids Surf A, 124984 (2020).

  45. S. Iqbal, A. Bahadur, S. Anwer, M. Shoaib, G. Liu, H. Li, M. Raheel, M. Javed, and B. Khalid, CrystEngComm, (2020).

  46. S. Iqbal, A. Bahadur, S. Anwer, S. Ali, A. Saeed, R. Muhammad Irfan, H. Li, M. Javed, M. Raheel, and M. Shoaib, Appl. Surf. Sci., 146691 (2020).

  47. S. Iqbal, M. Javed, A. Bahadur, M.A. Qamar, M. Ahmad, M. Shoaib, M. Raheel, N. Ahmad, M.B. Akbar, and H. Li, J. Mater. Sci. Mater. Electron., (2020).

  48. S. Iqbal, Appl. Catal. B 274, 119097 (2020).

    Article  Google Scholar 

  49. S.H. Samaha, D.M. Essa, and F.M. Tera, Polymer-Plast. Technol. Eng. 43, 503 (2004).

    Article  Google Scholar 

  50. D. Shen, X. Li, C. Ma, Y. Zhou, L. Sun, S. Yin, P. Huo, and H. Wang, New J. Chem. 44, 16390 (2020).

    Article  Google Scholar 

  51. M.J. Iqbal and S. Iqbal, J. Lumin. 134, 739 (2013).

    Article  Google Scholar 

  52. R. Bahariqushchi, S. Cosentino, M. Scuderi, E. Dumons, L.P. Tran-Huu-Hue, V. Strano, D. Grandjean, P. Lievens, G. Poulin-Vittrant, C. Spinella, A. Terrasi, G. Franzò, and S. Mirabella, Nanoscale 12, 19213 (2020).

    Article  Google Scholar 

  53. M.S. Abdel-wahab, A. Jilani, I.S. Yahia, and A.A. Al-Ghamdi, Superlat. Microstruct., 94108 (2016).

  54. G.F. Moreira, E.R. Peçanha, M.B.M. Monte, L.S. Leal Filho, and F. Stavale, Miner. Eng. 110, 96 (2017).

    Google Scholar 

  55. H.N. Abdelhamid and H.-F. Wu, J. Mater. Chem. B 1, 3950 (2013).

    Article  Google Scholar 

  56. M. Shahnawaz Khan, H.N. Abdelhamid, and H.-F. Wu, Colloids Surf. B 127, 281 (2015).

    Article  Google Scholar 

  57. H.N. Abdelhamid, A. Talib, and H.-F. Wu, RSC Adv. 5, 34594 (2015).

    Article  Google Scholar 

  58. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, and M.B. Akbar, J. Photochem. Photobiol., A 401, 112776 (2020).

    Article  Google Scholar 

  59. X. Li, B. Wang, T. Liang, R. Wang, P. Song, and Y. He, Nanoscale, (2020).

  60. T. Eom, and A. Khan, Chem. Commun., (2020).

Download references

Acknowledgements

The authors gratefully acknowledge the support received for this research work from the National Natural Science Foundation of China (51162026), the Major Project of Fundamental and Application Research of the Department of Education of Guangdong Province (2015KTSCX132 and 2017KZDXM080), the Science and Technology Foundation of Huizhou (2019 × 0705016), the University of Management and Technology, Lahore, Pakistan, and the Korean Research Fellowship Program through the National Research Foundation of Korea (NRF), Korea, funded by the Ministry of Science and ICT (Grant No. NRF-2019H1D3A1A01102931).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Iqbal, Ali Bahadur or Mohsin Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Nadeem, S., Bahadur, A. et al. The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocomposite. JOM 73, 380–386 (2021). https://doi.org/10.1007/s11837-020-04490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04490-0

Navigation