Skip to main content
Log in

Solid-Phase Equilibria in the Cu-Sb-S System and Thermodynamic Properties of Copper-Antimony Sulfides

  • Thermodynamic Considerations for Improved Renewable Energy Production
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A comprehensive study of solid-phase equilibria in the system Cu-Sb-S and thermodynamic properties of copper antimony sulfides was conducted by the powder x-ray diffraction technique, differential thermal analysis and electromotive forces (EMF) methods. The phase diagram of the system at 300 K constituting Cu3SbS4, CuSbS2, Cu3SbS3, Cu12Sb4S13 and Cu14Sb4S13 ternary compounds was built. Some components of the presented phase diagram differ from the previous works. From the data of EMF measurements of the concentration cells relative to the Cu electrode with a solid electrolyte Cu4RbCl3I2, the partial thermodynamic functions of copper in some phase regions of the Cu-Sb-S system and the standard thermodynamic functions of formation and the standard entropies of the ternary compounds were determined experimentally for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Peccerillo and K. Durose, MRS Energy Sustain. 5, 1 (2018). https://doi.org/10.1557/MRE.2018.10.

    Article  Google Scholar 

  2. H. Lei, J. Chen, Z. Tan, and G. Fang, Solar RRL (2019). https://doi.org/10.1002/solr.201900026.

    Article  Google Scholar 

  3. N.C. Miller and M. Bernechea, APL Mater. 6, 084503 (2018). https://doi.org/10.1063/1.5026541.

    Article  Google Scholar 

  4. X. Meng and Z. Zhang, J. Mol. Catal. A Chem. 423, 533 (2016). https://doi.org/10.1016/j.molcata.2016.07.030.

    Article  Google Scholar 

  5. M. Kumar and C. Persson, J. Renew. Sustain. Energy 5, 031616 (2013). https://doi.org/10.1063/1.4812448.

    Article  Google Scholar 

  6. Z. Ran, X. Wang, Y. Li, D. Yang, X.-G. Zhao, K. Biswas, D.J. Singh, and L. Zhang, npj Comput. Mater. 4, 14 (2018). https://doi.org/10.1038/s41524-018-0071-1.

    Article  Google Scholar 

  7. A. Walsh, D.J. Payne, R.G. Egdell, and G.W. Watson, Chem. Soc. Rev. 40, 4455 (2011). https://doi.org/10.1039/C1CS15098G.

    Article  Google Scholar 

  8. Y. Yang, H. Wu, B. Shi, L. Guo, Y. Zhang, X. An, H. Zhang, and S. Yang, Part. Part. Syst. Charact. 32, 668 (2015). https://doi.org/10.1002/ppsc.201400238.

    Article  Google Scholar 

  9. M. Kumar and C. Persson, J. Renew. Sustain. Energy 5, 031616 (2013). https://doi.org/10.1063/1.4812448.

    Article  Google Scholar 

  10. G. Chen, W. Wang, J. Zhao, W. Yang, S. Chen, Z. Huang, R. Jian, and H. Ruan, J. Alloys Compd. 679, 218 (2016). https://doi.org/10.1016/j.jallcom.2016.04.042.

    Article  Google Scholar 

  11. J.-J. Wang, M.Z. Akgul, Y. Bi, S. Christodoulou, and G. Konstantatos, J. Mater. Chem. A 5, 24621 (2017). https://doi.org/10.1039/C7TA08078F.

    Article  Google Scholar 

  12. B. Krishnan, S. Shaji, and R.E. Ornelas, J. Mater. Sci. Mater. Electron. 26, 4770 (2015). https://doi.org/10.1007/s10854-015-3092-2.

    Article  Google Scholar 

  13. Mindat.org, Open database of minerals, rocks, meteorites and the localities they come from, http://www.mindat.org. Accessed 23 Aug 2018.

  14. D. Filippou, P. Germain, and T. Grammatikopoulos, Miner. Process. Extr. Metall. Rev. 28, 247 (2007). https://doi.org/10.1080/08827500601013009.

    Article  Google Scholar 

  15. B.J. Skinner, F.D. Luce, and E. Makovicky, Econ. Geol. 67, 924 (1972). https://doi.org/10.2113/gsecongeo.67.7.924.

    Article  Google Scholar 

  16. F.E. Loranca-Ramos, C.J. Diliegros-Godines, R. Silva-González, and M. Pal, Appl. Surf. Sci. 427, 1099 (2018). https://doi.org/10.1016/j.apsusc.2017.08.027.

    Article  Google Scholar 

  17. K. Nefzi, A. Rabhi, and M. Kanzari, J. Mater. Sci. Mater. Electron. 27, 1888 (2016). https://doi.org/10.1007/s10854-015-3969-0.

    Article  Google Scholar 

  18. C. Behera, R. Samal, C.S. Rout, R.S. Dhaka, G. Sahoo, and S.L. Samal, Inorg. Chem. 58, 15291 (2019). https://doi.org/10.1021/acs.inorgchem.9b02291.

    Article  Google Scholar 

  19. J. Van Embden, K. Latham, N.W. Duffy, and Y. Tachibana, J. Am. Chem. Soc. 135, 11562 (2013). https://doi.org/10.1021/ja402702x.

    Article  Google Scholar 

  20. U. Chalapathi, B. Poornaprakash, and S.-H. Park, Ceram. Int. 43, 5229 (2017). https://doi.org/10.1016/j.ceramint.2017.01.048.

    Article  Google Scholar 

  21. A.A. Rahman, E. Hossain, H. Vaishnav, A. Bhattacharya, and A. Sarma, Semicond. Sci. Technol. 34, 105026 (2019). https://doi.org/10.1088/1361-6641/ab3fdf.

    Article  Google Scholar 

  22. M. Ishaq, H. Deng, U. Farooq, H. Zhang, X. Yang, U.A. Shah, and H. Song, Sol. RRL 3, 1900305 (2019). https://doi.org/10.1002/solr.201900305.

    Article  Google Scholar 

  23. J. Li, X. Han, J. Li, Y. Zhao, and C. Fan, Phys. Status Solidi B 254, 5 (2016). https://doi.org/10.1002/pssb.201600608.

    Article  Google Scholar 

  24. J. Van Embden, J.O. Mendes, J.J. Jasieniak, A.S.R. Chesman, and E.D. Gaspera, ACS Appl. Energy Mater. 3, 7885 (2020). https://doi.org/10.1021/acsaem.0c01296.

    Article  Google Scholar 

  25. M. Birkett, C.N. Savory, M.K. Rajpalke, W.M. Linhart, T.J. Whittles, J.T. Gibbon, A.W. Welch, I.Z. Mitrovic, A. Zakutayev, D.O. Scanlon, and T.D. Veal, APL Mater. 6, 8 (2018). https://doi.org/10.1063/1.5030207.

    Article  Google Scholar 

  26. B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, and J. Tang, Chem. Mater. 26, 3135 (2014). https://doi.org/10.1021/cm500516v.

    Article  Google Scholar 

  27. K. Ramasamy, H. Sims, W.H. Butler, and A. Gupta, J. Am. Chem. Soc. 136, 1587 (2014). https://doi.org/10.1021/ja411748g.

    Article  Google Scholar 

  28. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015). https://doi.org/10.1039/C5TC02537K.

    Article  Google Scholar 

  29. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013). https://doi.org/10.1002/aenm.201200650.

    Article  Google Scholar 

  30. D.I. Nasonova, VYu. Verchenko, A.A. Tsirlin, and A.V. Shevelkov, Chem. Mater. 28, 6621 (2016). https://doi.org/10.1021/acs.chemmater.6b02720.

    Article  Google Scholar 

  31. K. Chen, Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds. Diss. (Queen Mary University of London, 2016).

  32. D.S. Prem Kumar, M. Ren, T. Osipowicz, R.C. Mallik, and P. Malar, Sol. Energy 174, 422 (2018).

    Article  Google Scholar 

  33. Q. Wang, J. Li, and J. Li, Phys. Chem. Chem. Phys. 20, 1460 (2018). https://doi.org/10.1039/C7CP06465A.

    Article  Google Scholar 

  34. G.-E. Lee, J.-H. Pi, and I.-H. Kim, J. Electron. Mater. 49, 2781 (2019). https://doi.org/10.1007/s11664-019-07765-8.

    Article  Google Scholar 

  35. N. Parravano and P. de Cesaris, Chim. Ital. 42, 189 (1912).

    Google Scholar 

  36. V. Ross, Econ. Geol. 49, 734 (1954).

    Article  Google Scholar 

  37. J.H. Wernick and K.E. Benson, J. Chem. Phys. Solids 3, 157 (1957).

    Article  Google Scholar 

  38. L. Cambi and M. Elli, Chim. Ind. 47, 2 (1965).

    Google Scholar 

  39. R.A. Kuliyev, A.N. Krestovnikov, and V.M. Glazov, Izv. An SSSR Inorg. Mater. 5, 2217 (1969).

    Google Scholar 

  40. A.A. Godovikov, N.A. Ilyasheva, and S.N. Nenasheva, Soc. Min. Geol. Jpn. Spec. 2, 32 (1971).

    Google Scholar 

  41. N.A. Ilyasheva, Izv. An SSSR Inorg. Mater. 9, 1677 (1973).

    Google Scholar 

  42. M.H. Braga, J.A. Ferreira, C. Lopes, and L.F. Malheiros, Mater. Sci. Forum 587, 435 (2008). https://doi.org/10.4028/www.scientific.net/MSF.587-588.435.

    Article  Google Scholar 

  43. F. Tesfaye and P. Taskinen, Phase Equilibria and Thermochemistry of Selected Sulfide Systems in the Pyrometallurgy of Ni and Cu (Aalto University Publications in Materials Science and Engineering, Espoo, 2012).

    Google Scholar 

  44. A. Kyono and M. Kimata, Am. Miner. 90, 162 (2005). https://doi.org/10.2138/am.2005.1585.

    Article  Google Scholar 

  45. C.L. McCarthy, P. Cottingham, K. Abuyen, E.C. Schueller, S.P. Culver, and R.L. Brutchey, J. Mater. Chem. C 4, 6230 (2016). https://doi.org/10.1039/C6TC02117D.

    Article  Google Scholar 

  46. A. Pfitzner, Z. Anorg. Allg. Chem. 620, 1992 (1994).

    Article  Google Scholar 

  47. T.B. Zunic and E. Makovicky, in Proceedings of the 3rd European Powder Diffraction Conference (Transtec Publications Ltd., Zurich-Uetikon, 1994), pp. 659–664.

  48. A. Pfitzner, S. Reiser, and Z. Kristallogr, Cryst. Mater. 217, 51 (2002). https://doi.org/10.1524/zkri.217.2.51.20632.

    Article  Google Scholar 

  49. P. Lemoine, C. Bourgès, T. Barbier, V. Nassif, S. Cordier, and E. Guilmeau, J. Solid State Chem. 247, 83 (2017). https://doi.org/10.1016/j.jssc.2017.01.003.

    Article  Google Scholar 

  50. E. Makovicky and B.S. Skinner, Can. Miner. 17, 619 (1979).

    Google Scholar 

  51. J.R. Craig and W.R. Lees, Econ. Geol. 67, 373 (1972).

    Article  Google Scholar 

  52. L. Dziewidek, J. Botor, and J. Norwisz, Arch. Hutn. 31, 491 (1986).

    Google Scholar 

  53. R.R. Seal II., E.J. Essene, and W.C. Kelly, Can. Miner. 28, 725 (1990).

    Google Scholar 

  54. A. Mookherjee and B. Mishra, Miner. Depos. 19, 112 (1984).

    Article  Google Scholar 

  55. L.T. Bryndzia and O.J. Kleppa, Am. Miner. 73, 707 (1988).

    Google Scholar 

  56. V.S. Iorish and V.S. Yungman (eds.), Thermal Constants of Substances: Database. Version 2 (2006), http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html.

  57. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (Wiley-VCH, New York, 2008).

    Google Scholar 

  58. O. Кubaschewski, C.B. Alcock, and P.J. Spenser, Materials Thermochemistry, 6th edn. (Pergamon Press, Oxford, New York, 1993).

    Google Scholar 

  59. R.A. Robie and B.S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (United States Government Printing Office, Washington, 1995).

    Google Scholar 

  60. R. DeHoff, Thermodynamics in Materials Science, 2nd edn. (CRC Press, Boca Raton, 2006).

    Book  Google Scholar 

  61. M.B. Babanly, E.V. Chulkov, Z.S. Aliev, A.V. Shevelkov, and I.R. Amiraslanov, Russ. J. Inorg. Chem. 62, 1703 (2017). https://doi.org/10.1134/S0036023617130034.

    Article  Google Scholar 

  62. M.B. Babanly, L.F. Mashadiyeva, D.M. Babanly, S.Z. Imamaliyeva, D.B. Tagiev, and Y.A. Yusibov, Russ. J. Inorg. Chem. 64, 1649 (2019). https://doi.org/10.1134/S0036023619130035.

    Article  Google Scholar 

  63. B. Mishra and K.L. Pruseth, Contr. Miner. Pet. 118, 92 (1994). https://doi.org/10.1007/BF00310613.

    Article  Google Scholar 

  64. K.L. Pruseth, B. Mishra, and H.J. Bernhardt, Econ. Geol. 92, 720 (1997). https://doi.org/10.2113/gsecongeo.92.6.720.

    Article  Google Scholar 

  65. A.G. Morachevsky, G.F. Voronin, V.A. Geyderich, and I.B. Kutsenok, Electrochemical Methods of Investigation in Thermodynamics of Metal Systems (Academic Publishing, Moscow, 2003).

    Google Scholar 

  66. M.B. Babanly and Y.A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic Systems (Elm, Baku, 2011) (in Russian).

    Google Scholar 

  67. M.B. Babanly, Y.A. Yusibov, and N.B. Babanly, in Electromotive Force and Measurement in Several Systems. ed. by S. Kara (Intechweb.Org, London, 2011), p. 57. https://doi.org/10.5772/28934.

    Chapter  Google Scholar 

  68. M. Aspiala, F. Tesfaye, and P. Taskinen, J. Chem. Thermodyn. 98, 361 (2016). https://doi.org/10.1016/j.jct.2016.03.009.

    Article  Google Scholar 

  69. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, and L. Hupa, J. Electron. Mater. 47, 5433 (2018). https://doi.org/10.1007/s11664-018-6430-3.

    Article  Google Scholar 

  70. M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, and L. Hupa, Materials Processing Fundamentals 2020. The Minerals, Metals and Materials Series (Springer, Cham, 2020), pp 275–287. https://doi.org/10.1007/978-3-030-36556-1_23.

    Book  Google Scholar 

  71. E.G. Osadchii, Y.I. Korepanov, and N.N. Zhdanov, Instrum. Exp. Tech. 59, 302 (2016). https://doi.org/10.1134/S0020441216010255.

    Article  Google Scholar 

  72. N.B. Babanly, E.N. Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, and M.B. Babanly, J. Chem. Thermodyn. 128, 78 (2019). https://doi.org/10.1016/j.jct.2018.08.012.

    Article  Google Scholar 

  73. N.B. Babanly, S.Z. Imamaliyeva, Y.A. Yusibov, D.B. Taghiyev, and M.B. Babanly, J. Solid State Electrochem. 22, 1143 (2018).

    Article  Google Scholar 

  74. I.D. Alverdiev, S.Z. Imamalieva, D.M. Babanly, Y.A. Yusibov, D.B. Tagiev, and M.B. Babanly, Russ. J. Electrochem. 55, 467 (2019). https://doi.org/10.1134/S1023193519050021.

    Article  Google Scholar 

  75. S.Z. Imamaliyeva, I.F. Mekhdiyeva, D.M. Babanly, V.P. Zlomanov, D.B. Tagiyev, and M.B. Babanly, Russ. J. Inorg. Chem. 65, 1762 (2020). https://doi.org/10.1134/S0036023620110066.

    Article  Google Scholar 

  76. Z.S. Aliev, S.S. Musayeva, S.Z. Imamaliyeva, and M.B. Babanlı, J. Therm. Anal. Calorim. 133, 1115 (2018).

    Article  Google Scholar 

  77. S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Tagiyev, and M.B. Babanly, Thermochim. Acta 679, 178319 (2019). https://doi.org/10.1016/j.tca.2019.178319.

    Article  Google Scholar 

  78. I.J. Alverdiyev, Z.S. Aliev, S.M. Bagheri, L.F. Mashadiyeva, Y.A. Yusibov, and M.B. Babanly, J. Alloys Compd. 691, 255 (2017). https://doi.org/10.1016/j.jallcom.2016.08.251.

    Article  Google Scholar 

  79. I.J. Alverdiyev, V.A. Abbasova, Y.A. Yusibov, D.B. Tagiyev, and M.B. Babanly, Russ. J. Electrochem. 54, 153 (2018).

    Article  Google Scholar 

  80. L.F. Mashadieva, Z.T. Gasanova, Yu.A. Yusibov, and M.B. Babanly, Inorg. Mater. 54, 8 (2018). https://doi.org/10.1134/S0020168518010090.

    Article  Google Scholar 

  81. M.B. Babanly, Z.T. Gasanova, L.F. Mashadieva, V.P. Zlomanov, and Y.A. Yusibov, Inorg. Mater. 48, 225 (2012). https://doi.org/10.1134/S0020168512020021.

    Article  Google Scholar 

  82. N.B. Babanly, Z.E. Salimov, M.M. Akhmedov, and M.B. Babanly, Russ. J. Electrochem. 48, 68 (2012). https://doi.org/10.1134/S1023193512010041.

    Article  Google Scholar 

  83. J. Emsley, The Elements, 3rd edn. (Oxford University Press, New York, 1998).

    Google Scholar 

  84. V.M. Glazov, A.S. Burkhanov, and N.M. Saleeva, Russ. J. Phys. Chem. 49, 979 (1975).

    Google Scholar 

  85. G.K. Johnson, G.N. Papatheodorou, and C.E. Johnson, J. Chem. Thermodyn. 13, 745 (1981). https://doi.org/10.1016/0021-9614(81)90063-X.

    Article  Google Scholar 

Download references

Acknowledgements

The work has been partially supported by the Science Development Foundation under the President of the Republic of Azerbaijan, Grant No. EİF-BGM-4-RFTF-1/2017-21/11/4-M-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla F. Mashadiyeva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashadiyeva, L.F., Mammadli, P.R., Babanly, D.M. et al. Solid-Phase Equilibria in the Cu-Sb-S System and Thermodynamic Properties of Copper-Antimony Sulfides. JOM 73, 1522–1530 (2021). https://doi.org/10.1007/s11837-021-04624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04624-y

Navigation