Skip to main content

Advertisement

Log in

A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V

  • Processing-Microstructure-Property Relationships in Additive Manufacturing of Ti Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium alloys are expensive and difficult to process into large complex components for aerospace applications. Directed energy deposition (DED), one of the additive manufacturing (AM) technologies, offers a high deposition rate, being suitable for fabricating large metallic components. So far, most review articles on the AM of titanium discuss the popular powder bed fusion method with the emphasis on the “workhorse” titanium alloy—Ti-6Al-4V. There have been few review articles on the DED process of a broad range of titanium alloys—near-α, β, and other α + β alloys beyond Ti-6Al-4V. This article focuses on the processing–microstructure–property relationships in the DED-processed titanium alloys (Ti-6Al-4V and beyond) with the following aspects: (1) microstructure evolution induced by solidification, thermal cycles, and post-processing heat treatment; (2) tensile properties of as-deposited and heat-treated titanium alloys; (3) defects, residual stresses, and fatigue properties; and (4) micro/nanomechanical properties. The article concludes with perspectives about future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. G. Lutjering and J.C. Williams, Titanium, 2nd edn. (Springer, New York, 2007).

    Google Scholar 

  2. R.R. Boyer, Mater. Sci. Eng. A 213, 103. (1996).

    Article  Google Scholar 

  3. B. Dutta and F. Froes, Additive Manufacturing of Titanium Alloys, 1st edn. (Butterworth-Heinemann, Oxford, 2016).

    Google Scholar 

  4. D. Banerjee and J.C. Williams, Acta Mater. 61, 844. (2013).

    Article  Google Scholar 

  5. R.P. Kolli and A. Devaraj, Metals 8, 506. (2018).

    Article  Google Scholar 

  6. R.G. Hennig, D.R. Trinkle, J. Bouchet, S.G. Srinivasan, R.C. Albers, and J.W. Wilkins, Nature Mater. 4, 129. (2005).

    Article  Google Scholar 

  7. I. Inagaki, T. Takechi, Y. Shirai, and N. Ariyasu, Nippon Steel Sumitomo Met. Tech. Rep. 106, 22. (2014).

    Google Scholar 

  8. P. Spittle, Phys. Educ. 38, 504. (2003).

    Article  Google Scholar 

  9. E. Benini (IntechOpen, 2011).

  10. C. Cui, B. Hu, L. Zhao, and S. Liu, Mater. Des. 32, 1684. (2011).

    Article  Google Scholar 

  11. S. Seong, O. Younossi, and B. W. Goldsmith (Rand Publishing, 2009).

  12. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, Mater. Sci. Eng. A 605, 89. (2014).

    Article  Google Scholar 

  13. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371. (2016).

    Article  Google Scholar 

  14. H. Sun, X. Chu, Z. Liu, A Gisele, and Y. Zou, Metall. Mater. Trans. A 52, 1714. (2021).

  15. I. Gibson, D. Rosen, and B. Stucker, Additive Manuf. Technol., 245 (2015).

  16. B. Dutta and F. H. Froes, Titanium Powder Metall., 447 (2015).

  17. D. Agius, K.I. Kourousis, and C. Wallbrink, Metals 8, 75. (2018).

    Article  Google Scholar 

  18. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Int. J. Mach. Tools Manuf. 128, 1. (2018).

    Article  Google Scholar 

  19. A.M. Beese and B.E. Carroll, JOM 68, 724. (2016).

    Article  Google Scholar 

  20. U. Scipioni Bertoli, G. Guss, S. Wu, M. J. Matthews, and J. M. Schoenung, Mater. Des. 135, 385 (2017).

  21. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, J. Alloys Compd. 632, 505. (2015).

    Article  Google Scholar 

  22. C. Liu, Y. Lu, X. Tian, and D. Liu, Mater. Sci. Eng. A 661, 145. (2016).

    Article  Google Scholar 

  23. Y. Zhu, X. Tian, J. Li, and H. Wang, Mater. Des. 67, 538. (2015).

    Article  Google Scholar 

  24. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309. (2015).

    Article  Google Scholar 

  25. C. Qiu, G.A. Ravi, and M.M. Attallah, Mater. Des. 81, 21. (2015).

    Article  Google Scholar 

  26. Y.-Y. Zhu, H.-B. Tang, Z. Li, C. Xu, and B. He, J. Alloys Compd. 777, 7126. (2019).

    Google Scholar 

  27. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, and M.A. Easton, Nature 576, 91. (2019).

    Article  Google Scholar 

  28. G.-C. Li, J. Li, X.-J. Tian, X. Cheng, B. He, and H.-M. Wang, Mater. Sci. Eng. A 684, 233. (2017).

    Article  Google Scholar 

  29. Y. Zhu, X. Tian, J. Li, and H. Wang, J. Alloys Compd. 616, 468. (2014).

    Article  Google Scholar 

  30. Z. Guo, S. Malinov, and W. Sha, Comput. Mater. Sci. 32, 1. (2005).

    Article  Google Scholar 

  31. S. Kelly and S. Kampe, Metall. Mater. Trans. A 35, 1861. (2004).

    Article  Google Scholar 

  32. C. Kenel, D. Grolimund, X. Li, E. Panepucci, V.A. Samson, D.F. Sanchez, F. Marone, and C. Leinenbach, Sci. Rep. 7, 16358. (2017).

    Article  Google Scholar 

  33. J. Haubrich, J. Gussone, P. Barriobero-Vila, P. Kürnsteiner, E.A. Jägle, D. Raabe, N. Schell, and G. Requena, Acta Mate. 167, 136. (2019).

    Article  Google Scholar 

  34. Z. Li, X. Cheng, J. Li, and H. Wang, Mater. Charact. 128, 115. (2017).

    Article  Google Scholar 

  35. X.J. Tian, S.Q. Zhang, A. Li, and H.M. Wang, Mater. Sci. Eng. A 527, 1821. (2010).

    Article  Google Scholar 

  36. J. Li and H.M. Wang, Mater. Sci. Eng. A 560, 193. (2013).

    Article  Google Scholar 

  37. B. He, J. Li, X. Cheng, and H.-M. Wang, Mater. Sci. Eng. A 699, 229. (2017).

    Article  Google Scholar 

  38. A. Carrozza, A. Aversa, P. Fino, and M. Lombardi, J. Alloys Compd. 159329 (2021).

  39. A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, and H. Fraser, Acta Mater. 60, 596. (2012).

    Article  Google Scholar 

  40. Z. Li, J. Li, J. Liu, D. Liu, and H. Wang, J. Alloys Compd. 657, 278. (2016).

    Article  Google Scholar 

  41. C. Wang, J. Yi, L. Qin, W. Wang, X. Wang, and G. Yang, Mater. Res. Express 6, 116526. (2019).

    Article  Google Scholar 

  42. Y. Lu, H. Tang, Y. Fang, D. Liu, and H. Wang, Mater. Des. 37, 56. (2012).

    Article  Google Scholar 

  43. P. Kobryn, E. Moore, and S. Semiatin, Scr. Mater. 43, 299. (2000).

    Article  Google Scholar 

  44. C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs, N. Patil, and B. Stucker, Addit. Manuf. 14, 137. (2017).

    Google Scholar 

  45. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science 363, 849. (2019).

    Article  Google Scholar 

  46. X. Cao, W. Wallace, C. Poon, and J.P. Immarigeon, Adv. Manuf. Process. 18, 1. (2003).

    Article  Google Scholar 

  47. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, J. Mater. Process. Technol. 222, 33. (2015).

    Article  Google Scholar 

  48. T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, and S. Ma, J. Alloys Compd. 817, 153334. (2020).

    Article  Google Scholar 

  49. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, Mater. Sci. Eng. A 673, 204. (2016).

    Article  Google Scholar 

  50. L. Zhao, J.G.S. Macías, A. Dolimont, A. Simar, and E. Rivière-Lorphèvre, Addit. Manuf. 36, 101499. (2020).

    Google Scholar 

  51. K. Carpenter and A. Tabei, Materials 13, 255. (2020).

    Article  Google Scholar 

  52. S. Wolff, T. Lee, E. Faierson, K. Ehmann, and J. Cao, J. Manuf. Processes 24, 397. (2016).

    Article  Google Scholar 

  53. Y. Kok, X.P. Tan, P. Wang, M. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565. (2018).

    Article  Google Scholar 

  54. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, and F.S. Silva, J. Alloys Compds 804, 163. (2019).

    Article  Google Scholar 

  55. P. Kobryn and S. Semiatin, 2001 International Solid Freeform Fabrication Symposium (2001).

  56. N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, and A.M. Beese, J. Mater. Process. Technol. 264, 172. (2019).

    Article  Google Scholar 

  57. W. Fan, H. Tan, X. Lin, and W. Huang, Mater. Des. 160, 1096. (2018).

    Article  Google Scholar 

  58. L. Huaixue, G. Shuili, and F. Qunxing, Appl. Laser 31, 45. (2011).

    Article  Google Scholar 

  59. Q. Liu, Y. Wang, H. Zheng, K. Tang, H. Li, and S. Gong, Opt. Laser Technol. 82, 1. (2016).

    Article  Google Scholar 

  60. Y.-Y. Zhu, C. Bo, H.-B. Tang, X. Cheng, H.-M. Wang, and L. Jia, Trans. Nonferr. Metals Soc. China 28, 36. (2018).

    Article  Google Scholar 

  61. H.-S. Ren, X.-J. Tian, L. Dong, L. Jian, and H.-M. Wang, Trans. Nonferr. Metals Soc. China 25, 1856. (2015).

    Article  Google Scholar 

  62. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, and D. Liu, Mater. Sci. Eng. A 586, 323. (2013).

    Article  Google Scholar 

  63. X. Xie, S. Zhang, H. Tang, A. Li, Y. Fang, P. Li, and H. Wang, Rare Metal Mater Eng. 37, 1510. (2008).

    Google Scholar 

  64. Y. Zhai, H. Galarraga, and D.A. Lados, Proced. Eng. 114, 658. (2015).

    Article  Google Scholar 

  65. C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah, J. Alloys Compd. 629, 351. (2015).

    Article  Google Scholar 

  66. Y. Wu and R. Bao, Int. J. Fat. 116, 462. (2018).

    Article  Google Scholar 

  67. Y. Zhu, D. Liu, X. Tian, H. Tang, and H. Wang, Mater. Des. (1980–2015), 56, 445 (2014).

  68. H.-S. Ren, X.-J. Tian, D. Liu, J. Liu, and H.-M. Wang, Trans. Nonferr. Metals Soc. China 25, 1856. (2015).

    Article  Google Scholar 

  69. H.D. Carlton, K.D. Klein, and J.W. Elmer, Sci. Technol. Weld. Join. 24, 465. (2019).

    Article  Google Scholar 

  70. C. Hicks, T. Konkova, and P. Blackwell, Mater. Charact. 170, 110675. (2020).

    Article  Google Scholar 

  71. A. Hatefi, Doctoral dissertation (University of Birmingham, UK, 2013).

  72. Y. Wang, S.-Q. Zhang, X.-J. Tian, and H.-M. Wang, Int. J. Miner. Metall. Mater., 20, 665 (2013).

  73. F. Wang, L.-M. Lei, X. Fu, Z.-M. Song, L. Shi, B. Zhang, and G.-P. Zhang, Mater. Sci. Eng. A 782, 139284. (2020).

    Article  Google Scholar 

  74. P. Harish, Thesis (University West, Sweden, 2020).

    Google Scholar 

  75. A. Zhang, D. Liu, X. Wu, and H. Wang, J. Alloys Compd. 585, 220. (2014).

    Article  Google Scholar 

  76. A. Zhang, D. Liu, and H. Wang, Mater. Sci. Eng. A 562, 61. (2013).

    Article  Google Scholar 

  77. T.-R. Ma, Y.-L. Fang, and H.-M. Wang, Trans. Mater. Heat Treat. 33, 101. (2012).

    Google Scholar 

  78. Y. Chen, C. Yang, C. Fan, Y. Zhuo, S. Lin, and C. Chen, J. Alloys Compd. 155874 (2020).

  79. Y.-J. Liang and H.-M. Wang, Mater. Sci. Eng. A 622, 16. (2015).

    Article  Google Scholar 

  80. C. Liu, H. Wang, X. Tian, and D. Liu, Mater. Sci. Eng. A 604, 176. (2014).

    Article  Google Scholar 

  81. C. Liu, L. Yu, A. Zhang, X. Tian, D. Liu, and S. Ma, Mater. Sci. Eng. A 673, 185. (2016).

    Article  Google Scholar 

  82. N. Sanaei and A. Fatemi, Progr. Mater. Sci. 100724 (2020).

  83. P. Åkerfeldt, R. Pederson, and M.-L. Antti, Int. J. Fat. 87, 245. (2016).

    Article  Google Scholar 

  84. D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fat. 94, 211. (2017).

    Article  Google Scholar 

  85. S. Tammas-Williams, P. Withers, I. Todd, and P. Prangnell, Sci. Rep. 7, 1. (2017).

    Article  Google Scholar 

  86. R. Molaei, A. Fatemi, and N. Phan, Int. J. Fat. 117, 352. (2018).

    Article  Google Scholar 

  87. X. Wang, X. He, T. Wang, and Y. Li, Addit. Manuf. 28, 373. (2019).

    Google Scholar 

  88. X. Wang, X. He, T. Wang, and Y. Li, Addit. Manuf. 35, 101174. (2020).

    Google Scholar 

  89. H.M. Wang, Q.S. Zhang, T. Wang, and Y.Y. Zhu, J. Xihua Univ. (Nat. Sci. Ed.) 37, 9. (2018).

    Google Scholar 

  90. R.J. He and H.M. Wang, Mater. Sci. Eng. A 527, 1933. (2010).

    Article  Google Scholar 

  91. S. Lu, R. Bao, K. Wang, D. Liu, Y. Wu, and B. Fei, Mater. Sci. Eng. A 690, 378. (2017).

    Article  Google Scholar 

  92. Z. Liu, P. Liu, L. Wang, Y. Lu, X. Lu, Z.-X. Qin, and H.-M. Wang, Mater. Sci. Eng. A 716, 140. (2018).

    Article  Google Scholar 

  93. Z. Y. Liu, B. He, and Y. Zou, J. Mater. Res. In press.

  94. C. de Formanoir, G. Martin, F. Prima, S.Y.P. Allain, T. Dessolier, F. Sun, S. Vivès, B. Hary, Y. Bréchet, and S. Godet, Acta Mater. 162, 149. (2019).

    Article  Google Scholar 

  95. T. Sun, W. Tan, L. Chen, and A. Rollett, MRS Bull. 45, 927. (2020).

    Article  Google Scholar 

  96. M.H. Farshidianfar, A. Khajepour, and A. Gerlich, Int. J. Adv. Manuf. Technol. 82, 1173. (2016).

    Article  Google Scholar 

  97. J. Bennett, D. Garcia, M. Kendrick, T. Hartman, G. Hyatt, K. Ehmann, F. You, and J. Cao, J. Manuf. Sci. Eng., 141, (2019).

  98. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, and P. Fino, Appl. Sci. 9, 3316. (2019).

    Article  Google Scholar 

  99. L. Yan, Y. Chen, and F. Liou, Addit. Manuf. 31, 100901. (2020).

    Google Scholar 

  100. H. Qu, P. Li, S. Zhang, A. Li, and H. Wang, Mater. Des. 31, 574. (2010).

    Article  Google Scholar 

  101. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Acta Mater. 97, 1. (2015).

    Article  Google Scholar 

  102. H. X. Chen, Z. Y. Liu, X. Chen, and Y. Zou. J. Alloys Compds. In press.

  103. J. Thomas, J. Mogonye, S. Mantri, D. Choudhuri, R. Banerjee, and T. Scharf, Addit. Manuf. 33, 101132. (2020).

    Google Scholar 

  104. H. Sun, X. Chu, C. Luo, H. Chen, Z. Liu, Y. Zhang, and Y. Zou, Metall. Mater. Trans. A 52, 1540. (2021).

    Article  Google Scholar 

  105. J. Kim, A. Wakai, and A. Moridi, J. Mater. Res. 35, 1963. (2020).

    Article  Google Scholar 

  106. T. Zegard and G.H. Paulino, Struct. Multidisciplin. Optimiz. 53, 175. (2016).

    Article  Google Scholar 

  107. C. Wang, X. Tan, S. B. Tor, and C. Lim, Addit. Manuf., 101538 (2020).

  108. K. Wang, R. Bao, T. Zhang, B. Liu, Z. Yang, and B. Jiang, Int. J. Fat. 124, 217. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Z.L., T.L., and Y.Z. acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant # RGPIN-2018-05731) and Dean’s Spark Assistant Professorship and XSeed Funding Program in the Faculty of Applied Science & Engineering at the University of Toronto. Z.L. also acknowledges the China Scholarship Council for a graduate fellowship (No. 201907980002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei He or Yu Zou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., He, B., Lyu, T. et al. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V. JOM 73, 1804–1818 (2021). https://doi.org/10.1007/s11837-021-04670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04670-6

Navigation