Skip to main content
Log in

Stress and Deformation Distribution and Microstructure Changes Around Pin-Loaded Holes in Medium Manganese Steel Plates

  • Advances in Multi-modal Characterization of Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of traction load, plate thickness, and pin radius on stress and deformation distribution were investigated by simulation symmetrical pin traction experiment and analytical calculation methods. At the beginning of traction, both contact angle and maximum stress increase with the traction load. As the traction continues, maximum stress is steady and only the contact angle increases with the traction load. The stress concentration increases with the decrease of pin radius and does not change with other parameters under the same pin radius. The increase of specimen thickness can only reduce the contact angle but does not lessen the stress concentration, and thicker specimens can bear more traction load when reaching the same contact angle. Strengthening during deformation is caused not only by the increase of dislocation density in martensite matrix but also by retained austenite (RA) strain-induced martensite transformation (SIMT), which is conducive to the transfer of plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(D\) :

Diameter of the hole

\(\Delta D\) :

Diameter increase along the direction of the traction

\(F\) :

Traction force

\(h\) :

Thickness of the specimen

\(\Delta {h}_{0}\) :

Maximum unilateral thickening of the specimen

\(p\) :

Normal edge force

\({p}_{0}\) :

Force resultant amplitude

\(r\) :

Radius of the pin

\(R\) :

Radius of the hole

\(t\) :

Length of thickening area

\(\Delta \theta \) :

Contact angle between pin and hole

References

  1. F. Gamdani, R. Boukhili, and A. Vadean, Mater. Des. 88, 702. (2015).

    Article  Google Scholar 

  2. H. Bazvandi and E. Poursaeidi, Eng. Fail. Anal. 111, 104443 (2020).

  3. Y. Xu, H. Zhu, W. Xu, and C. Liu, Int. J. Heat. Mass. Transf. 125, 629. (2018).

    Article  Google Scholar 

  4. R. Karakuzu, N. Taylak, B.M. İçten, and M. Aktaş, Compos. Struct. 85, 1. (2008).

    Article  Google Scholar 

  5. V. Fiore, L. Calabrese, T. Scalici, and A. Valenza, Compos. B. Eng. 187, 107864 (2020).

  6. Z. Zhang, W. Wang, C. Rans, and R. Benedictus, Procedia Struct. Integr. 2, 3361. (2016).

    Article  Google Scholar 

  7. B. Grüber, W. Hufenbach, L. Kroll, M. Lepper, and B. Zhou, Compos. Sci. Technol. 67, 1439. (2007).

    Article  Google Scholar 

  8. T.S. Kim, and H. Kuwamura, Mater. Des. 32, 3942. (2011).

    Article  Google Scholar 

  9. O. Aluko, and H.A. Whitworth, Compos. Struct. 86, 308. (2008).

    Article  Google Scholar 

  10. C. Echavarría, P. Haller, and A. Salenikovich, Compos. Struct. 79, 107. (2007).

    Article  Google Scholar 

  11. T. Wu, K. Zhang, H. Cheng, P. Liu, D. Song, and Y. Li, Compos. B. Eng. 100, 176. (2016).

    Article  Google Scholar 

  12. E. Persson, E. Madenci, and I. Eriksson, Theor. Appl. Fract. Mech. 30, 87. (1998).

    Article  Google Scholar 

  13. Z. Wang, Y. Wang, Y. Zhang, L. Gardner, and Y. Ouyang, Eng. Struct. 200, 109675 (2019).

  14. R. Karakuzu, C.R. Çalışkan, M. Aktaş, and B.M. İçten, Compos. Struct. 82, 225. (2008).

    Article  Google Scholar 

  15. V. Fiore, L. Calabrese, T. Scalici, P. Bruzzaniti, and A. Valenza, Polym. Test. 69, 310. (2018).

    Article  Google Scholar 

  16. R. Karakuzu, O. Demirgoren, B.M. Icten, and M.E. Deniz, Mater. Des. 31, 3029. (2010).

    Article  Google Scholar 

  17. Z.Z. Zhao, R.H. Cao, J.H. Liang, F. Li, C. Li, and S.F. Yang, JOM-US 70, 700. (2018).

    Article  Google Scholar 

  18. G.Q. Su, X.H. Gao, D.Z. Zhang, L.X. Du, J. Hu, and Z.G. Liu, JOM-US 70, 672. (2018).

    Article  Google Scholar 

  19. R. Alturk, L.G. Hector Jr., M. Enloe, F. Abu-Farha, and T.W. Brown, JOM-US 70, 894. (2018).

    Article  Google Scholar 

  20. R. Rana, E. De Moor, J.G. Speer, and D.K. Matlock, JOM-US 70, 706. (2018).

    Article  Google Scholar 

  21. S. Pani, S.K. Singh, and B.K. Mohapatra, JOM-US 68, 1525. (2016).

    Article  Google Scholar 

  22. J. Zhao, and Z. Jiang, Prog. Mater. Sci. 94, 174. (2018).

    Article  Google Scholar 

  23. Y.K. Lee, and J. Han, Mater. Sci. Technol. 31, 843. (2015).

    Article  Google Scholar 

  24. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra, Mater. Charact. 136, 20. (2017).

    Article  Google Scholar 

  25. H. Liu, L.X. Du, J. Hu, H.Y. Wu, and R.D.K. Misra, J. Alloys Compd. 695, 2072. (2017).

    Article  Google Scholar 

  26. X.Y. Qi, L.X. Du, J. Hu, and R.D.K. Misra, Mater. Sci. Eng. A 718, 471. (2018).

    Article  Google Scholar 

  27. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong, Acta Mater. 59, 4002. (2011).

    Article  Google Scholar 

  28. B.B. He, B.M. Huang, S.H. He, Y. Qi, H.W. Yen, and M.X. Huang, Mater. Sci. Eng. A 724, 11. (2018).

    Article  Google Scholar 

  29. H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, and S. Lee, Acta Mater. 147, 247. (2018).

    Article  Google Scholar 

  30. J. Hu, L. Du, G. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87. (2015).

    Article  Google Scholar 

  31. Y. Du, X. Gao, L. Lan, X. Qi, H. Wu, L. Du, and R.D.K. Misra, Int. J. Hydrog. Energ. 44, 32292. (2019).

    Article  Google Scholar 

  32. P.D. Mangalgiri, T.S. Ramamurthy, B. Dattaguru, and A.K. Rao, Int. J. Mech. Sci. 29, 577. (1987).

    Article  Google Scholar 

  33. F. Chang, R.A. Scott, and G.S. Springer, J. Compos. Mater. 16, 470. (1982).

    Article  Google Scholar 

  34. Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, and W. Ke, Acta Mater. 139, 188. (2017).

    Article  Google Scholar 

  35. B. Zhang, L.X. Du, Y. Dong, D.X. Han, H.Y. Wu, F.H. Lu, and R.D.K. Misra, Mater. Sci. Eng. A 771, 138643 (2020).

Download references

Acknowledgements

The authors at NEU gratefully appreciate the financial support by the National High-tech R&D Program (863 Program) (No. 2015AA03A501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Du, X. H. Gao or L. X. Du.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, X.H., Du, Z.W. et al. Stress and Deformation Distribution and Microstructure Changes Around Pin-Loaded Holes in Medium Manganese Steel Plates. JOM 73, 3301–3311 (2021). https://doi.org/10.1007/s11837-021-04881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04881-x

Navigation