Skip to main content
Log in

Applications for grain boundary engineered materials

  • Overview
  • Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Advances in automated electron diffraction techniques, microstructural modeling, and the understanding of structure-property relationships for grain boundaries have resulted in the emergence of grain boundary engineering as a formidable tool for cost-effectively achieving enhanced performance in commercial polycrystalline materials (i.e., metals, alloys, and ceramics). In this article, some applications for grain boundary engineering technology that have been developed during the past several years are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hargreaves and R.J. Hill, J. Inst. Metals, 41 (1929), p. 257.

    Google Scholar 

  2. M.L. Kronberg and F.H. Wilson, Trans. TMS-AIME, 185 (1949), p. 501.

    Google Scholar 

  3. K.T. Aust and J.W. Rutter, Trans. AIME, 215 (1959), p. 119.

    CAS  Google Scholar 

  4. G. Palumbo and K.T. Aust, Materials Interfaces, ed. D. Wolf and S. Yip (London: Chapman and Hall, 1992), p. 190.

    Google Scholar 

  5. T. Watanabe, Res. Mechanica, 11 (1984), p. 47.

    CAS  Google Scholar 

  6. T. Watanabe, Grain Boundary Engineering, ed. U. Erb and G. Palumbo (Montreal: CIM, 1993), p. 57.

    Google Scholar 

  7. B. Adams, S. Wright, and K. Kunze, Met. Trans. A, 24 (1993), p. 819. See also J.A. Venables and C.J. Harland, Phil. Mag., 27 (1973), p. 1193.

    Google Scholar 

  8. G. Palumbo et al., Scripta Metall., 25 (1991), p. 1775.

    Article  CAS  Google Scholar 

  9. E.M. Lehockey et al., Scripta Metallurgica et Materialia, 36 (1997), p. 1211.

    CAS  Google Scholar 

  10. G. Palumbo et al., Ontario Hydro Research Division report no. A-NSG-94-17-K (1994).

  11. G. Palumbo, E.M. Lehockey, and P. Lin, Microscopy and Microanalysis, Suppl. 2, eds. G.W. Bailey et al. (New York: Springer, 1997), p. 573.

    Google Scholar 

  12. G. Palumbo et al., Interfacial Engineering for Optimized Properties, 458, eds. C.L. Briant et al. (Pittsburgh, PA: MRS, 1997), p. 273.

    Google Scholar 

  13. Annual Book of Standards G28-85 (Philadelphia, PA: ASTM, 1985), p. 91.

  14. R.W. Fawley, Superalloys (New York: Perigon Press, 1993), p. 3.

    Google Scholar 

  15. G.W. Meetham, Materials and Design, 9 (1988), p. 213.

    Article  Google Scholar 

  16. R.F. Decker, Proceedings of the Steel Strengthening Mechanisms Symposium (Zurich, Switzerland: Climax Molybdenum Co., 1969), p. 147.

    Google Scholar 

  17. W. Betteridge, Materials Science and Technology, 7 (1992), p. 643.

    Google Scholar 

  18. V.P. Swaminathan and P. Lowden, EPRI report GS-6544 (1989).

  19. R.S. Bartocci, Hot Corrosion Problems Associated With Gas Turbines, ASTM STP 421 (Philadelphia, PA: ASTM, 1967), p. 169.

    Google Scholar 

  20. E.M. Lehockey and G. Palumbo, Materials Science and Engineering, A237 (1997), p. 168.

    CAS  Google Scholar 

  21. N.S. Stolof, ASM Metals Handbook, 1 (Metal Park, OH: ASM, 1990), p. 950.

    Google Scholar 

  22. J.J. Lander, J. of the Electrochemical Soc., 98 (1968), p. 220.

    Google Scholar 

  23. H. Bode, Lead Acid Batteries (New York: Wiley Interscience, 1977), p. 322.

    Google Scholar 

  24. E.M. Valeriote, J.S. Scklarchuk, and M.S. Ho, Proceedings of Symposium on Advances in Lead-Acid Batteries (Pennington, NJ: Electrochemical Society, 84–14, 1984), p. 224.

    Google Scholar 

  25. E.M. Lehockey et al., Interfacial Engineering for Optimized Properties, 458, ed. C.L. Briant et al. (Pittsburgh, PA: MRS 1997), p. 243.

    Google Scholar 

  26. M.J. Riezenman, IEEE Spectrum, 5 (1995), p. 51.

    Article  Google Scholar 

  27. H. Oman, Proceedings of the 9th Annual Battery Conference on Advances and Applications, IEE AES Systems Magazine, 4 (1994), p. 24.

    Google Scholar 

  28. J.S. Rege et al., Proceedings of the 38th MWSP Conference, 34 (Warrendale, PA: ISS, 1977), p. 555.

    Google Scholar 

  29. E.M. Lehockey, G. Palumbo, and P. Lin, Scripta Metall., in press.

  30. E.M. Lehockey et al., Scripta Metall., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

G. Palumbo earned his Ph.D. in metallurgy and materials science at the University of Toronto in 1989. He is currently a principal research scientist at Ontario Hydro.

E.M. Lehockey earned his M.Sc. in materials engineering at the University of Western Ontario in 1988. He is currently a senior research scientist at Ontario Hydro.

P. Lin earned his Ph.D. in metallurgy and materials science at the University of Toronto in 1997. He is currently a research scientist at Ontario Hydro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palumbo, G., Lehockey, E.M. & Lin, P. Applications for grain boundary engineered materials. JOM 50, 40–43 (1998). https://doi.org/10.1007/s11837-998-0248-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0248-z

Keywords

Navigation