Skip to main content
Log in

A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper has two main goals. First, we are concerned with a description of all self-adjoint extensions of the Laplacian \( - \Delta {|_{C_0^\infty (\Omega )}}\) in L 2(Ω; d n x). Here, the domain Ω belongs to a subclass of bounded Lipschitz domains (which we term quasi-convex domains), that contains all convex domains as well as all domains of class C 1,r, for r > 1/2. Second, we establish Kreĭn-type formulas for the resolvents of the various self-adjoint extensions of the Laplacian in quasiconvex domains and study the well-posedness of boundary value problems for the Laplacian as well as basic properties of the corresponding Weyl-Titchmarsh operators (or energy-dependent Dirichlet-to-Neumann maps). One significant innovation in this paper is an extension of the classical boundary trace theory for functions in spaces that lack Sobolev regularity in a traditional sense, but are suitably adapted to the Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

    MATH  Google Scholar 

  2. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Academic Press, 2003.

  3. V. Adamyan, Non-negative perturbations of nonnegative self-adjoint operators, Meth. Funct. Anal. Top. 13 (2007), no. 2, 103–109.

    MATH  MathSciNet  Google Scholar 

  4. M. S. Agranovich, Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains, Russ. Math. Surv. 57:5 (2003), 847–920.

    MathSciNet  Google Scholar 

  5. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Volume II, Pitman, Boston, 1981.

    Google Scholar 

  6. S. Albeverio, J. F. Brasche, M. M. Malamud, and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228 (2005), 144–188.

    MATH  MathSciNet  Google Scholar 

  7. S. Albeverio, M. Dudkin, A. Konstantinov, and V. Koshmanenko, On the point spectrum of H −2-singular perturbations, Math. Nachr. 280 (2007), 20–27.

    MATH  MathSciNet  Google Scholar 

  8. A. Alonso and B. Simon, The Birman-Kreĭn-Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory 4 (1980), 251–270.

    MATH  MathSciNet  Google Scholar 

  9. D. Alpay and J. Behrndt, Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators, J. Funct. Anal. 257 (2009), 1666–1694.

    MATH  MathSciNet  Google Scholar 

  10. W. O. Amrein and D. B. Pearson, M Operators: a generalization of Weyl-Titchmarsh theory, J. Comp. Appl. Math. 171 (2004), 1–26.

    MATH  MathSciNet  Google Scholar 

  11. T. Ando and K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. 22 (1970), 65–75.

    MATH  MathSciNet  Google Scholar 

  12. Yu. M. Arlinskii, On m-accretive extensions and restrictions, Meth. Funct. Anal. Top. 4 (1998), 1–26.

    MathSciNet  Google Scholar 

  13. Yu. M. Arlinskii, Abstract boundary conditions for maximal sectorial extensions of sectorial operators, Math. Nachr. 209 (2007), 5–36.

    MathSciNet  Google Scholar 

  14. Yu. M. Arlinskii, S. Hassi, Z. Sebestyén, and H. S. V. de Snoo, On the class of extremal extensions of a nonnegative operator, in Recent Advances in Operator Theory and Related Topics, Birkhäuser, Basel, 2001, pp. 41–81.

    Google Scholar 

  15. Yu. M. Arlinskii and E. R. Tsekanovskii, On the theory of nonnegative selfadjoint extensions of a nonnegative symmetric operator, Rep. Nat. Acad. Sci. Ukraine 2002, no. 11, 30–37.

  16. Yu. M. Arlinskiĭ and E. R. Tsekanovskiĭ, On von Neumann’s problem in extension theory of nonnegative operators, Proc. Amer. Math. Soc. 131 (2003), 3143–3154.

    MATH  MathSciNet  Google Scholar 

  17. Yu. M. Arlinskiĭ and E. R. Tsekanovskiĭ, The von Neumann problem for nonnegative symmetric operators, Integral Equations Operator Theory 51 (2005), 319–356.

    MATH  MathSciNet  Google Scholar 

  18. Yu. Arlinskiĭ and E. Tsekanovskiĭ, M.Kreĭn’s research on semibounded operators, its contemporary developments, and applications, in Modern Analysis and Applications. The Mark Kreĭn Centenary Conference, Vol. 1, Birkhäuser, Basel, 2009, pp. 65–112.

    Google Scholar 

  19. M. S. Ashbaugh, F. Gesztesy, M. Mitrea, and G. Teschl, Spectral theory for perturbed Kreĭn Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372–1467.

    MATH  MathSciNet  Google Scholar 

  20. M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, The Kreĭnvon Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283 (2010), 165–179.

    MATH  MathSciNet  Google Scholar 

  21. G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25 (2004), 321–348.

    MATH  MathSciNet  Google Scholar 

  22. G. Auchmuty, Spectral characterization of the trace spaces H s(∂Ω), SIAM J. Math. Anal. 38 (2006), 894–905.

    MATH  MathSciNet  Google Scholar 

  23. J. Behrndt and M. Langer, Boundary value problems for partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), 536–565.

    MATH  MathSciNet  Google Scholar 

  24. J. Behrndt, M. M. Malamud, and H. Neidhardt, Scattering matrices and Weyl functions, Proc. London Math. Soc. (3) 97 (2008), 568–598.

    MATH  MathSciNet  Google Scholar 

  25. S. Belyi, G. Menon, and E. Tsekanovskii, On Kreĭn’s formula in the case of non-densely defined symmetric operators, J. Math. Anal. Appl. 264 (2001), 598–616.

    MATH  MathSciNet  Google Scholar 

  26. S. Belyi and E. Tsekanovskii, On Kreĭn’s formula in indefinite metric spaces, Lin. Algebra Appl. 389 (2007), 305–322.

    MathSciNet  Google Scholar 

  27. M. Sh. Birman, On the theory of self-adjoint extensions of positive definite operators, Mat. Sbornik 38 (1956), 431–450.

    MathSciNet  Google Scholar 

  28. M. Sh. Birman, Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions, Vestnik Leningrad Univ. 17, no. 1 (1962), 22–55. Engl. transl. in Spectral Theory of Differential Operator, AMS Transl., Ser. 2, Vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 19–53.

    MathSciNet  Google Scholar 

  29. J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl functions and singular continuous spectra of self-adjoint extensions, in Stochastic Processes, Physics and Geometry: New Interplays. II, Amer. Math. Soc., Providence, RI, 2000, pp. 75–84.

    Google Scholar 

  30. J. F. Brasche, M. M. Malamud, and H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Integral Eq. Operator Th. 43 (2002), 264–289.

    MATH  MathSciNet  Google Scholar 

  31. B. M. Brown and J. S. Christiansen, On the Kreĭn and Friedrichs extension of a positive Jacobi operator, Expo. Math. 23 (2005), 179–186.

    MATH  MathSciNet  Google Scholar 

  32. B. M. Brown, G. Grubb, and I. G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math. Nachr. 282 (2009), 314–347.

    MATH  MathSciNet  Google Scholar 

  33. M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko, and I. Wood, The abstract Titchmarsh-Weyl M-function for adjoint operator pairs and its relation to the spectrum, Integral Eq. Operator Th. 63 (2009), 297–320.

    MATH  MathSciNet  Google Scholar 

  34. B. M. Brown and M. Marletta, Spectral inclusion and spectral exactness for PDE’s on exterior domains, IMA J. Numer. Anal. 24 (2004), 21–43.

    MATH  MathSciNet  Google Scholar 

  35. M. Brown, M. Marletta, S. Naboko, and I. Wood, Boundary triplets and M-functions for nonselfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc. (2) 77 (2008), 700–718.

    MATH  MathSciNet  Google Scholar 

  36. J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20 (2008), 1–70.

    MATH  MathSciNet  Google Scholar 

  37. M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 849–854.

    MATH  MathSciNet  Google Scholar 

  38. V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo, Generalized resolvents of symmetric operators and admissibility, Meth. Funct. Anal. Top. 6 (2000), 24–55.

    MATH  Google Scholar 

  39. V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), 5351–5400.

    MATH  MathSciNet  Google Scholar 

  40. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.

    MATH  MathSciNet  Google Scholar 

  41. V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), 141–242.

    MATH  MathSciNet  Google Scholar 

  42. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  43. W. N. Everitt and L. Markus, Complex symplectic spaces and boundary value problems, Bull. Amer. Math. Soc. 42 (2005), 461–500.

    MATH  MathSciNet  Google Scholar 

  44. W. N. Everitt, L. Markus, M. Plum, An unusual self-adjoint linear partial differential operator, Trans. Amer. Math. Soc. 357 (2004), 1303–1324.

    MathSciNet  Google Scholar 

  45. W. N. Everitt, L. Markus, M. Muzzulini, M. Plum, A continuum of unusual self-adjoint linear partial differential operators, J. Comp. Appl. Math. 208 (2007), 164–175.

    MATH  MathSciNet  Google Scholar 

  46. W. G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, Vol. 433, Springer, Berlin, 1975.

    MATH  Google Scholar 

  47. H. Federer, Geometric Measure Theory, reprint of the 1969 ed., Springer, Berlin, 1996.

    MATH  Google Scholar 

  48. H. Freudenthal, Über die Friedrichsche Fortsetzung halbbeschränkter Hermitescher Operatoren, Kon. Akad. Wetensch., Amsterdam, Proc. 39 (1936), 832–833.

    Google Scholar 

  49. K. Friedrichs, Spektraltheorie halbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren I, II, Math. Ann. 109, 465–487, 685–713 (1934), corrs. in Math. Ann. 110 (1935), 777–779.

    MATH  MathSciNet  Google Scholar 

  50. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994.

    MATH  Google Scholar 

  51. F. Gesztesy, N. J. Kalton, K. A. Makarov, and E. Tsekanovskii, Some Applications of Operator-Valued Herglotz Functions, in Operator Theory, System Theory and Related Topics, Birkhäuser, Basel, 2001, pp. 271–321.

    Google Scholar 

  52. F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005), 443–471.

    MATH  MathSciNet  Google Scholar 

  53. F. Gesztesy, K. A. Makarov, and E. Tsekanovskii, An addendum to Kreĭn’s formula, J. Math. Anal. Appl. 222 (1998), 594–606.

    MATH  MathSciNet  Google Scholar 

  54. F. Gesztesy, D. Mitrea, I. Mitrea and M. Mitrea, On the nature of the Laplace-Beltrami operator on Lipschitz manifolds, J. Math. Sci. 172 (2011), 279–346.

    MATH  Google Scholar 

  55. F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Kreĭn-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.

    Google Scholar 

  56. F. Gesztesy and M. Mitrea, Robin-to-Robin maps and Kreĭn-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Modern Analysis and Applications. The Mark Kreĭn Centenary Conference, Vol. 2, Birkhäuser, Basel, 2009, pp. 81–113.

    Google Scholar 

  57. F. Gesztesy, M. Mitrea. Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Diff. Eq. 247 (2009), 2871–2896.

    MATH  MathSciNet  Google Scholar 

  58. F. Gesztesy, M. Mitrea, and M. Zinchenko, Variations on a Theme of Jost and Pais, J. Funct. Anal. 253 (2007), 399–448.

    MATH  MathSciNet  Google Scholar 

  59. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138.

    MATH  MathSciNet  Google Scholar 

  60. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer, Dordrecht, 1991.

    Google Scholar 

  61. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

    MATH  Google Scholar 

  62. G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 425–513.

    MATH  MathSciNet  Google Scholar 

  63. G. Grubb, Les problèmes aux limites généraux d’un opérateur elliptique, provenant de le théorie variationnelle, Bull. Sci. Math. (2) 94 (1970), 113–157.

    MATH  MathSciNet  Google Scholar 

  64. G. Grubb, Spectral asymptotics for the ┐soft” selfadjoint extension of a symmetric elliptic differential operator, J. Operator Theory 10 (1983), 9–20.

    MATH  MathSciNet  Google Scholar 

  65. G. Grubb, Known and unknown results on elliptic boundary problems, Bull. Amer. Math. Soc. 43 (2006), 227–230.

    MATH  MathSciNet  Google Scholar 

  66. G. Grubb, Kreĭn resolvent formulas for elliptic boundary problems in nonsmooth domains, Rend. Semin. Mat. Univ. Politec. Torino 66 (2008), 271–297.

    MATH  MathSciNet  Google Scholar 

  67. G. Grubb, Distributions and Operators, Springer, New York, 2009.

    MATH  Google Scholar 

  68. P. Hartman, Perturbation of spectra and Kreĭn extensions, Rend. Circ.Mat. Palermo (2) 5 (1957), 341–354.

    MATH  MathSciNet  Google Scholar 

  69. S. Hassi and S. Kuzhel, On symmetries in the theory of finite rank singular perturbations, J. Funct. Anal. 256 (2009), 777–809.

    MATH  MathSciNet  Google Scholar 

  70. S. Hassi, M. Malamud, and H. de Snoo, On Kreĭn’s extension theory of nonnegative operators, Math. Nachr. 274–275 (2004), 40–73.

    Google Scholar 

  71. S. Hassi, A. Sandovici, H. de Snoo, and H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Theory 58 (2007), 351–386.

    MATH  Google Scholar 

  72. S. Hofmann, M. Mitrea, and M. Taylor, Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains, J. Geom. Analy. 17 (2007), 593–647.

    MATH  MathSciNet  Google Scholar 

  73. T. Jakab, I. Mitrea, and M. Mitrea, W 2,p estimates for the Robin boundary value problem in nonsmooth domains, preprint, 2008.

  74. D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219.

    MATH  MathSciNet  Google Scholar 

  75. T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.

    MATH  Google Scholar 

  76. V. Koshmanenko, Singular operators as a parameter of self-adjoint extensions, in Operator Theory and Related Topics, Birkhäuser, Basel, 2000, pp. 205–223.

    Google Scholar 

  77. M. G. Kreĭn, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik 20 (1947), 431–495.

    Google Scholar 

  78. M. G. Kreĭn, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat. Sbornik 21 (1947), 365–404.

    MathSciNet  Google Scholar 

  79. M. G. Kreĭn and I. E. Ovcharenko, Q-functions and sc-resolvents of nondensely defined hermitian contractions, Sib. Math. J. 18 (1977), 728–746.

    Google Scholar 

  80. M. G. Kreĭn and I. E. Ovčarenko, Inverse problems for Q-functions and resolvent matrices of positive hermitian operators, Sov. Math. Dokl. 19 (1978), 1131–1134.

    Google Scholar 

  81. M. G. Kreĭn, S. N. Saakjan, Some new results in the theory of resolvents of hermitian operators, Sov. Math. Dokl. 7 (1966), 1086–1089.

    Google Scholar 

  82. P. Kurasov, Triplet extensions I: Semibounded operators in the scale of Hilbert spaces, J. Anal. Math. 107 (2009), 251–286.

    MATH  MathSciNet  Google Scholar 

  83. P. Kurasov and S. T. Kuroda, Kreĭn’s resolvent formula and perturbation theory, J. Operator Theory 51 (2004), 321–334.

    MATH  MathSciNet  Google Scholar 

  84. H. Langer, B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), 135–165.

    MATH  MathSciNet  Google Scholar 

  85. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Berlin, Springer-Verlag, 1972.

    MATH  Google Scholar 

  86. K. A. Makarov and E. Tsekanovskii, On μ-scale invariant operators, Meth. Funct. Anal. Top. 13 (2007), 181–186.

    MATH  MathSciNet  Google Scholar 

  87. M. M. Malamud, On a formula of the generalized resolvents of a nondensely defined hermitian operator, Ukrain. Math. J. 44, No. 12 (1992), 1522–1547.

    MathSciNet  Google Scholar 

  88. M.M. Malamud and V. I. Mogilevskii, Kreĭn type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology, 8 (2002), 72–100.

    MATH  MathSciNet  Google Scholar 

  89. M. Marletta, Eigenvalue problems on exterior domains and Dirichlet to Neumann maps, J. Comp. Appl. Math. 171 (2004), 367–391.

    MATH  MathSciNet  Google Scholar 

  90. V. G. Maz’ja, Sobolev Spaces, Springer, Berlin, 1985.

    MATH  Google Scholar 

  91. V. Maz’ya, M. Mitrea, and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math. 110 (2010), 167–239.

    MATH  MathSciNet  Google Scholar 

  92. V. G. Maz’ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  93. V. G. Maz’ya and T. O. Shaposhnikova, Higher regularity in the layer potential theory for Lipschitz domains, Indiana Univ. Math. J. 54 (2005), 99–142.

    MATH  MathSciNet  Google Scholar 

  94. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  95. A. B. Mikhailova, B. S. Pavlov, and L. V. Prokhorov, Intermediate Hamiltonian via Glazman’s splitting and analytic perturbation for meromorphic matrix-functions, Math. Nachr. 280 (2007), 1376–1416.

    MATH  MathSciNet  Google Scholar 

  96. I. Mitrea and M. Mitrea, Multiple Layer Potentials for Higher Order Elliptic Boundary Value Problems, preprint, 2008.

  97. M. Mitrea, Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains, J. Math. Anal. Appl. 202 (1996), 819–842.

    MATH  MathSciNet  Google Scholar 

  98. M. Mitrea, M. Taylor, and A. Vasy, Lipschitz domains, domains with corners, and the Hodge Laplacian, Comm. Partial Differential Equations 30 (2005), 1445–1462.

    MATH  MathSciNet  Google Scholar 

  99. S. Nakamura, A remark on the Dirichlet-Neumann decoupling and the integrated density of states, J. Funct. Anal. 179 (2001), 136–152.

    MATH  MathSciNet  Google Scholar 

  100. G. Nenciu, Applications of the Kreĭn resolvent formula to the theory of self-adjoint extensions of positive symmetric operators, J. Operator Theory 10 (1983), 209–218.

    MATH  MathSciNet  Google Scholar 

  101. K. Pankrashkin, Resolvents of self-adjoint extensions with mixed boundary conditions, Rep. Math. Phys. 58 (2006), 207–221.

    MATH  MathSciNet  Google Scholar 

  102. B. Pavlov, The theory of extensions and explicitly-soluble models, Russ. Math. Surv. 42:6 (1987), 127–168.

    Google Scholar 

  103. B. Pavlov, S-matrix and Dirichlet-to-Neumann operators, Ch. 6.1.6 in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Vol. 2, Academic Press, San Diego, 2002, pp. 1678–1688.

    Google Scholar 

  104. A. Posilicano, A Kreĭn-like formula for singular perturbations of self-adjoint operators and applications, J. Funct. Anal. 183 (2001), 109–147.

    MATH  MathSciNet  Google Scholar 

  105. A. Posilicano, Self-adjoint extensions by additive perturbations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 2 (2003), 1–20.

    MathSciNet  Google Scholar 

  106. A. Posilicano, Boundary triples and Weyl functions for singular perturbations of self-adjoint operators, Methods Funct. Anal. Topology 10 (2004), 57–63.

    MATH  MathSciNet  Google Scholar 

  107. A. Posilicano, Self-adjoint extensions of restrictions, Operators andMatrices 2 (2008), 483–506.

    MATH  MathSciNet  Google Scholar 

  108. A. Posilicano and L. Raimondi, Kreĭn’s resolvent formula for self-adjoint extensions of symmetric second-order elliptic differential operators, J. Phys. A 42 (2009) no. 1, 015204.

    MathSciNet  Google Scholar 

  109. V. Prokaj and Z. Sebestyén, On extremal positive operator extensions, Acta Sci. Math. (Szeged) 62 (1996), 485–491.

    MATH  MathSciNet  Google Scholar 

  110. V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), 237–257.

    MathSciNet  Google Scholar 

  111. V. Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27 (2007), 305–331.

    MATH  MathSciNet  Google Scholar 

  112. V. Ryzhov, Weyl Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control, Complex Anal. Oper. Theory 3 (2009), 289–322.

    MATH  MathSciNet  Google Scholar 

  113. V. Ryzhov, Spectral boundary value problems and their linear operators, preprint, 2009, arXiv:0904.0276.

  114. Sh. N. Saakjan, On the theory of the resolvents of a symmetric operator with infinite deficiency indices (Russian), Dokl. Akad. Nauk Arm. SSR 44 (1965), 193–198.

    MathSciNet  Google Scholar 

  115. Z. Sebestyén and E. Sikolya, On Kreĭn-von Neumann and Friedrichs extensions, Acta Sci. Math. (Szeged) 69 (2003), 323–336.

    MATH  MathSciNet  Google Scholar 

  116. B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), 82–203.

    MATH  MathSciNet  Google Scholar 

  117. C. F. Skau, Positive self-adjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand. 44 (1979), 171–195.

    MATH  MathSciNet  Google Scholar 

  118. O. G. Storozh, On the hard and soft extensions of a nonnegative operator, J. Math. Sci. 79 (1996), 1378–1380.

    MathSciNet  Google Scholar 

  119. A. V. Štraus, Generalized resolvents of symmetric operators, Dokl. Akad. Nauk SSSR 71 (1950), 241–244.

    MATH  Google Scholar 

  120. A. V. Štraus, On the generalized resolvents of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Math. 18 (1954), 51–86.

    Google Scholar 

  121. A. V. Štraus, Extensions and generalized resolvents of a non-densely defined symmetric operator (Russian), Math. USSR Izv. 4 (1970), 179–208.

    MATH  Google Scholar 

  122. A. V. Štraus, On extensions of a semibounded operator, Sov.Math. Dokl. 14 (1973), 1075–1079.

    MATH  Google Scholar 

  123. H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15 (2002), 475–524.

    MATH  MathSciNet  Google Scholar 

  124. E. R. Tsekanovskii, Non-self-adjoint accretive extensions of positive operators and theorems of Friedrichs-Kreĭn-Phillips, Funct. Anal. Appl. 14 (1980), 156–157.

    MathSciNet  Google Scholar 

  125. E. R. Tsekanovskii, Friedrichs and Kreĭn extensions of positive operators and holomorphic contraction semigroups, Funct. Anal. Appl. 15 (1981), 308–309.

    MathSciNet  Google Scholar 

  126. E. R. Tsekanovskii, Accretive extensions and problems on the Stieltjes operator-valued functions realizations, in Operator Theory and Complex Analysis, Birkhäuser, Basel, 1992, pp. 328–347.

    Google Scholar 

  127. E. R. Tsekanovskii and Yu. L. Shmul’yan, The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions, Russ. Math. Surv. 32:5 (1977), 73–131.

    Google Scholar 

  128. M. L. Višik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obsc. 1, 187–246 (1952), English translation in Amer. Math. Soc. Transl. Ser 2, 24 (1963), 107–172.

    MathSciNet  Google Scholar 

  129. J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929), 49–131.

    MATH  Google Scholar 

  130. J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy.

Additional information

Dedicated to the memory of M. Sh. Birman (1928–2009)

Based upon work partially supported by the US National Science Foundation under Grant No. DMS-0400639

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Mitrea, M. A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains. JAMA 113, 53–172 (2011). https://doi.org/10.1007/s11854-011-0002-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0002-2

Keywords

Navigation