Skip to main content
Log in

Limit-periodic Schrödinger operators with uniformly localized eigenfunctions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We exhibit limit-periodic Schrödinger operators that are uniformly localized in the strongest sense possible. That is, for these operators there are uniform exponential decay rates such that every element of the hull has a complete set of eigenvectors that decay exponentially off their centers of localization at least as fast as prescribed by the uniform decay rate. Consequently, these operators exhibit uniform dynamical localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), 1492–1505.

    Article  Google Scholar 

  2. A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Comm. Math. Phys. 288 (2009), 907–918.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Avron and B. Simon, Almost periodic Schrödinger operators. I. Limit periodic potentials, Comm. Math. Phys. 82 (1981), 101–120.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Bjerklöv, Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent, Geom. Funct. Anal. 16 (2006), 1183–1200.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, On the spectrum of lattice Schrödinger operators with deterministic potential II., J. Anal. Math. 88 (2002), 221–254.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Craig, Pure point spectrum for discrete almost periodic Schödinger operators, Comm. Math. Phys. 88 (1983), 113–131.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Damanik and Z. Gan, Spectral properties of limit-periodic Schrödinger operators, Comm. Pure Appl. Anal. 10 (2011), 859–871.

    Article  MathSciNet  Google Scholar 

  8. D. Damanik and Z. Gan, Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents, J. Funct. Anal. 258, (2010), 4010–4025.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, What is localization?, Phys. Rev. Lett. 75 (1995), 117–119.

    Article  Google Scholar 

  10. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), 153–200.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Figotin and L. Pastur, An exactly solvable model of a multidimensional incommensurate structure, Comm. Math. Phys. 95 (1984), 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Fishman, D. Grempel, and R. Prange, Localization in a d-dimensional incommensurate structure, Phys. Rev. B 29 (1984), 4272–4276.

    Article  MathSciNet  Google Scholar 

  13. Z. Gan, An exposition of the connection between limit-periodic potentials and profinite groups, Math. Model. Nat. Phenom. 5, (2010), 158–174.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gordon, Purely continuous spectrum for generic almost-periodic potential, Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997), Contemp. Math. 217, Amer. Math. Soc., Providence, RI, 1998, pp. 183–189.

    Google Scholar 

  15. D. Grempel, S. Fishman, and R. Prange, Localization in an incommensurate potential: An exactly solvable model, Phys. Rev. Lett. 49 (1982), 833–836.

    Article  MathSciNet  Google Scholar 

  16. S. Jitomirskaya, Continuous spectrum and uniform localization for ergodic Schrödinger operators, J. Funct. Anal. 145 (1997), 312–322.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Jitomirskaya and B. Simon, Operators with singular continuous spectrum, III. Almost periodic Schrödinger operators, Comm. Math. Phys. 165 (1994), 201–205.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Molchanov and V. Chulaevsky, The structure of a spectrum of the lacunary-limit-periodic Schrödinger operator, Functional Anal. Appl. 18 (1984), 343–344.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Moser, An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Pöschel, Examples of discrete Schrödinger operators with pure point spectrum, Comm. Math. Phys. 88 (1983), 447–463.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Prange, D. Grempel, and S. Fishman, A solvable model of quantum motion in an incommensurate potential, Phys. Rev. B 29 (1984), 6500–6512.

    Article  MathSciNet  Google Scholar 

  22. H. Rüssmann, On the one-dimensional Schödinger equation with a quasi-periodic potential, Ann. New York Acad. Sci. 357 (1980), 90–107.

    Article  Google Scholar 

  23. B. Simon, Almost periodic Schrödinger operators. IV. The Maryland model, Ann. Physics 159 (1985), 157–183.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damanik.

Additional information

D. D. and Z. G. were supported in part by NSF grant DMS-0800100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damanik, D., Gan, Z. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. JAMA 115, 33–49 (2011). https://doi.org/10.1007/s11854-011-0022-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0022-y

Keywords

Navigation