Skip to main content
Log in

On the best constants in the Khintchine inequality for Steinhaus variables

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let S j : (Ω, P) → S 1 ⊂ ℂ be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality

$${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$

for 0 < p < 1, verifying a conjecture of U. Haagerup that

$${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$

. Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ℂn, ‖x2 = 1, that

$${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$

, answering a question of A. Baernstein and R. Culverhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, The Gamma function, Holt, Rinehart and Winston, London, 1964.

    MATH  Google Scholar 

  2. A. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publ., New York, 1972.

    MATH  Google Scholar 

  3. A. Baernstein and R. C. Culverhouse, Majorization of sequences, sharp vector Khintchine inequalities, and bisubharmonic functions, Studia Mathematica 152 (2002), 221–248.

    Article  MathSciNet  Google Scholar 

  4. T. Figiel, P. Hitczenko, W. B. Johnson, G. Schechtmen and J. Zinn, Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities, Transactions of the American Mathematical Society 349 (1977), 997–1027.

    Article  Google Scholar 

  5. I. Gradshtein and I. Ryzhik, Table of Integrals, Series and Products, 5th edition, Academic Press, New York, 1984.

    Google Scholar 

  6. U. Haagerup, The best constants in the Khintchine inequality, Studia Mathematica 70 (1982), 231–283.

    MATH  MathSciNet  Google Scholar 

  7. H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity 5 (2001), 115–152.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edition, Springer, Berlin, 1966.

    Book  MATH  Google Scholar 

  9. F.L. Nazarov and A.N. Podkorytov, Ball, Haagerup, and distribution functions, in Complex Analysis, Operators and Related Topics, (V. Havin and N. Nikolski, eds.), Birkhäuser, Basel, 2000, pp. 247–267.

    Chapter  Google Scholar 

  10. A. Pełczyński, Norms of classical operators in function spaces, Colloq. L. Schwartz, Astérisque 131 (1985), 107–126.

    Google Scholar 

  11. J. Sawa, On the best constant in the Khintchine inequality for complex Steinhaus variables, the case p = 1, Studia Mathematica 81 (1985), 107–126.

    MATH  MathSciNet  Google Scholar 

  12. S. Szarek, On the best constants in the Khintchine inequality, Studia Mathematica 58 (1976), 197–208.

    MATH  MathSciNet  Google Scholar 

  13. G. N. Watson, A Treatise on the Theory of Bessel Functions, 5th edition, Cambridge University Press, 1952.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann König.

Additional information

Gratefully dedicated to Joram Lindenstrauss whose fundamental work and professional integrity inspired a generation of mathematicians

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, H. On the best constants in the Khintchine inequality for Steinhaus variables. Isr. J. Math. 203, 23–57 (2014). https://doi.org/10.1007/s11856-013-0006-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0006-y

Keywords

Navigation